This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mulc.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| itg2mulc.3 | |- ( ph -> ( S.2 ` F ) e. RR ) |
||
| itg2mulc.4 | |- ( ph -> A e. ( 0 [,) +oo ) ) |
||
| Assertion | itg2mulc | |- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mulc.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 2 | itg2mulc.3 | |- ( ph -> ( S.2 ` F ) e. RR ) |
|
| 3 | itg2mulc.4 | |- ( ph -> A e. ( 0 [,) +oo ) ) |
|
| 4 | 1 | adantr | |- ( ( ph /\ 0 < A ) -> F : RR --> ( 0 [,) +oo ) ) |
| 5 | 2 | adantr | |- ( ( ph /\ 0 < A ) -> ( S.2 ` F ) e. RR ) |
| 6 | elrege0 | |- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
|
| 7 | 3 6 | sylib | |- ( ph -> ( A e. RR /\ 0 <_ A ) ) |
| 8 | 7 | simpld | |- ( ph -> A e. RR ) |
| 9 | 8 | anim1i | |- ( ( ph /\ 0 < A ) -> ( A e. RR /\ 0 < A ) ) |
| 10 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( ph /\ 0 < A ) -> A e. RR+ ) |
| 12 | 4 5 11 | itg2mulclem | |- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) |
| 13 | ge0mulcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 15 | fconst6g | |- ( A e. ( 0 [,) +oo ) -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) |
|
| 16 | 3 15 | syl | |- ( ph -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) |
| 17 | reex | |- RR e. _V |
|
| 18 | 17 | a1i | |- ( ph -> RR e. _V ) |
| 19 | inidm | |- ( RR i^i RR ) = RR |
|
| 20 | 14 16 1 18 18 19 | off | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ 0 < A ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) |
| 22 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 23 | fss | |- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
|
| 24 | 20 22 23 | sylancl | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ 0 < A ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
| 26 | 8 2 | remulcld | |- ( ph -> ( A x. ( S.2 ` F ) ) e. RR ) |
| 27 | 26 | adantr | |- ( ( ph /\ 0 < A ) -> ( A x. ( S.2 ` F ) ) e. RR ) |
| 28 | itg2lecl | |- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) /\ ( A x. ( S.2 ` F ) ) e. RR /\ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR ) |
|
| 29 | 25 27 12 28 | syl3anc | |- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR ) |
| 30 | 11 | rpreccld | |- ( ( ph /\ 0 < A ) -> ( 1 / A ) e. RR+ ) |
| 31 | 21 29 30 | itg2mulclem | |- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) <_ ( ( 1 / A ) x. ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) |
| 32 | 4 | feqmptd | |- ( ( ph /\ 0 < A ) -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 33 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 34 | ax-resscn | |- RR C_ CC |
|
| 35 | 33 34 | sstri | |- ( 0 [,) +oo ) C_ CC |
| 36 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> F : RR --> CC ) |
|
| 37 | 1 35 36 | sylancl | |- ( ph -> F : RR --> CC ) |
| 38 | 37 | adantr | |- ( ( ph /\ 0 < A ) -> F : RR --> CC ) |
| 39 | 38 | ffvelcdmda | |- ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> ( F ` y ) e. CC ) |
| 40 | 39 | mullidd | |- ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> ( 1 x. ( F ` y ) ) = ( F ` y ) ) |
| 41 | 40 | mpteq2dva | |- ( ( ph /\ 0 < A ) -> ( y e. RR |-> ( 1 x. ( F ` y ) ) ) = ( y e. RR |-> ( F ` y ) ) ) |
| 42 | 32 41 | eqtr4d | |- ( ( ph /\ 0 < A ) -> F = ( y e. RR |-> ( 1 x. ( F ` y ) ) ) ) |
| 43 | 17 | a1i | |- ( ( ph /\ 0 < A ) -> RR e. _V ) |
| 44 | 1red | |- ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> 1 e. RR ) |
|
| 45 | 43 30 11 | ofc12 | |- ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( RR X. { ( ( 1 / A ) x. A ) } ) ) |
| 46 | fconstmpt | |- ( RR X. { ( ( 1 / A ) x. A ) } ) = ( y e. RR |-> ( ( 1 / A ) x. A ) ) |
|
| 47 | 45 46 | eqtrdi | |- ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( y e. RR |-> ( ( 1 / A ) x. A ) ) ) |
| 48 | 8 | recnd | |- ( ph -> A e. CC ) |
| 49 | 48 | adantr | |- ( ( ph /\ 0 < A ) -> A e. CC ) |
| 50 | 11 | rpne0d | |- ( ( ph /\ 0 < A ) -> A =/= 0 ) |
| 51 | 49 50 | recid2d | |- ( ( ph /\ 0 < A ) -> ( ( 1 / A ) x. A ) = 1 ) |
| 52 | 51 | mpteq2dv | |- ( ( ph /\ 0 < A ) -> ( y e. RR |-> ( ( 1 / A ) x. A ) ) = ( y e. RR |-> 1 ) ) |
| 53 | 47 52 | eqtrd | |- ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( y e. RR |-> 1 ) ) |
| 54 | 43 44 39 53 32 | offval2 | |- ( ( ph /\ 0 < A ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) oF x. F ) = ( y e. RR |-> ( 1 x. ( F ` y ) ) ) ) |
| 55 | 30 | rpcnd | |- ( ( ph /\ 0 < A ) -> ( 1 / A ) e. CC ) |
| 56 | fconst6g | |- ( ( 1 / A ) e. CC -> ( RR X. { ( 1 / A ) } ) : RR --> CC ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ 0 < A ) -> ( RR X. { ( 1 / A ) } ) : RR --> CC ) |
| 58 | fconst6g | |- ( A e. CC -> ( RR X. { A } ) : RR --> CC ) |
|
| 59 | 49 58 | syl | |- ( ( ph /\ 0 < A ) -> ( RR X. { A } ) : RR --> CC ) |
| 60 | mulass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
|
| 61 | 60 | adantl | |- ( ( ( ph /\ 0 < A ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 62 | 43 57 59 38 61 | caofass | |- ( ( ph /\ 0 < A ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) oF x. F ) = ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) |
| 63 | 42 54 62 | 3eqtr2d | |- ( ( ph /\ 0 < A ) -> F = ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) |
| 64 | 63 | fveq2d | |- ( ( ph /\ 0 < A ) -> ( S.2 ` F ) = ( S.2 ` ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) ) |
| 65 | 29 | recnd | |- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. CC ) |
| 66 | 65 49 50 | divrec2d | |- ( ( ph /\ 0 < A ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) = ( ( 1 / A ) x. ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) |
| 67 | 31 64 66 | 3brtr4d | |- ( ( ph /\ 0 < A ) -> ( S.2 ` F ) <_ ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) ) |
| 68 | 5 29 11 | lemuldiv2d | |- ( ( ph /\ 0 < A ) -> ( ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <-> ( S.2 ` F ) <_ ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) ) ) |
| 69 | 67 68 | mpbird | |- ( ( ph /\ 0 < A ) -> ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) |
| 70 | itg2cl | |- ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* ) |
|
| 71 | 24 70 | syl | |- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* ) |
| 72 | 26 | rexrd | |- ( ph -> ( A x. ( S.2 ` F ) ) e. RR* ) |
| 73 | xrletri3 | |- ( ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* /\ ( A x. ( S.2 ` F ) ) e. RR* ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) |
|
| 74 | 71 72 73 | syl2anc | |- ( ph -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) |
| 75 | 74 | adantr | |- ( ( ph /\ 0 < A ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) |
| 76 | 12 69 75 | mpbir2and | |- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |
| 77 | 17 | a1i | |- ( ( ph /\ 0 = A ) -> RR e. _V ) |
| 78 | 37 | adantr | |- ( ( ph /\ 0 = A ) -> F : RR --> CC ) |
| 79 | 8 | adantr | |- ( ( ph /\ 0 = A ) -> A e. RR ) |
| 80 | 0re | |- 0 e. RR |
|
| 81 | 80 | a1i | |- ( ( ph /\ 0 = A ) -> 0 e. RR ) |
| 82 | simplr | |- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> 0 = A ) |
|
| 83 | 82 | oveq1d | |- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( 0 x. x ) = ( A x. x ) ) |
| 84 | mul02 | |- ( x e. CC -> ( 0 x. x ) = 0 ) |
|
| 85 | 84 | adantl | |- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
| 86 | 83 85 | eqtr3d | |- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( A x. x ) = 0 ) |
| 87 | 77 78 79 81 86 | caofid2 | |- ( ( ph /\ 0 = A ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
| 88 | 87 | fveq2d | |- ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) |
| 89 | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
|
| 90 | 88 89 | eqtrdi | |- ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = 0 ) |
| 91 | 2 | adantr | |- ( ( ph /\ 0 = A ) -> ( S.2 ` F ) e. RR ) |
| 92 | 91 | recnd | |- ( ( ph /\ 0 = A ) -> ( S.2 ` F ) e. CC ) |
| 93 | 92 | mul02d | |- ( ( ph /\ 0 = A ) -> ( 0 x. ( S.2 ` F ) ) = 0 ) |
| 94 | simpr | |- ( ( ph /\ 0 = A ) -> 0 = A ) |
|
| 95 | 94 | oveq1d | |- ( ( ph /\ 0 = A ) -> ( 0 x. ( S.2 ` F ) ) = ( A x. ( S.2 ` F ) ) ) |
| 96 | 90 93 95 | 3eqtr2d | |- ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |
| 97 | 7 | simprd | |- ( ph -> 0 <_ A ) |
| 98 | leloe | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
|
| 99 | 80 8 98 | sylancr | |- ( ph -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 100 | 97 99 | mpbid | |- ( ph -> ( 0 < A \/ 0 = A ) ) |
| 101 | 76 96 100 | mpjaodan | |- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |