This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer an associative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofcom.3 | |- ( ph -> G : A --> S ) |
||
| caofass.4 | |- ( ph -> H : A --> S ) |
||
| caofass.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
||
| Assertion | caofass | |- ( ph -> ( ( F oF R G ) oF T H ) = ( F oF O ( G oF P H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofcom.3 | |- ( ph -> G : A --> S ) |
|
| 4 | caofass.4 | |- ( ph -> H : A --> S ) |
|
| 5 | caofass.5 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
|
| 6 | 5 | ralrimivvva | |- ( ph -> A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
| 7 | 6 | adantr | |- ( ( ph /\ w e. A ) -> A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) ) |
| 8 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 9 | 3 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 10 | 4 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
| 11 | oveq1 | |- ( x = ( F ` w ) -> ( x R y ) = ( ( F ` w ) R y ) ) |
|
| 12 | 11 | oveq1d | |- ( x = ( F ` w ) -> ( ( x R y ) T z ) = ( ( ( F ` w ) R y ) T z ) ) |
| 13 | oveq1 | |- ( x = ( F ` w ) -> ( x O ( y P z ) ) = ( ( F ` w ) O ( y P z ) ) ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = ( F ` w ) -> ( ( ( x R y ) T z ) = ( x O ( y P z ) ) <-> ( ( ( F ` w ) R y ) T z ) = ( ( F ` w ) O ( y P z ) ) ) ) |
| 15 | oveq2 | |- ( y = ( G ` w ) -> ( ( F ` w ) R y ) = ( ( F ` w ) R ( G ` w ) ) ) |
|
| 16 | 15 | oveq1d | |- ( y = ( G ` w ) -> ( ( ( F ` w ) R y ) T z ) = ( ( ( F ` w ) R ( G ` w ) ) T z ) ) |
| 17 | oveq1 | |- ( y = ( G ` w ) -> ( y P z ) = ( ( G ` w ) P z ) ) |
|
| 18 | 17 | oveq2d | |- ( y = ( G ` w ) -> ( ( F ` w ) O ( y P z ) ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = ( G ` w ) -> ( ( ( ( F ` w ) R y ) T z ) = ( ( F ` w ) O ( y P z ) ) <-> ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) ) ) |
| 20 | oveq2 | |- ( z = ( H ` w ) -> ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) |
|
| 21 | oveq2 | |- ( z = ( H ` w ) -> ( ( G ` w ) P z ) = ( ( G ` w ) P ( H ` w ) ) ) |
|
| 22 | 21 | oveq2d | |- ( z = ( H ` w ) -> ( ( F ` w ) O ( ( G ` w ) P z ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) |
| 23 | 20 22 | eqeq12d | |- ( z = ( H ` w ) -> ( ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) <-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
| 24 | 14 19 23 | rspc3v | |- ( ( ( F ` w ) e. S /\ ( G ` w ) e. S /\ ( H ` w ) e. S ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
| 25 | 8 9 10 24 | syl3anc | |- ( ( ph /\ w e. A ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
| 26 | 7 25 | mpd | |- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) |
| 27 | 26 | mpteq2dva | |- ( ph -> ( w e. A |-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) = ( w e. A |-> ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
| 28 | ovexd | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) ) e. _V ) |
|
| 29 | 2 | feqmptd | |- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 30 | 3 | feqmptd | |- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 31 | 1 8 9 29 30 | offval2 | |- ( ph -> ( F oF R G ) = ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) ) |
| 32 | 4 | feqmptd | |- ( ph -> H = ( w e. A |-> ( H ` w ) ) ) |
| 33 | 1 28 10 31 32 | offval2 | |- ( ph -> ( ( F oF R G ) oF T H ) = ( w e. A |-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) ) |
| 34 | ovexd | |- ( ( ph /\ w e. A ) -> ( ( G ` w ) P ( H ` w ) ) e. _V ) |
|
| 35 | 1 9 10 30 32 | offval2 | |- ( ph -> ( G oF P H ) = ( w e. A |-> ( ( G ` w ) P ( H ` w ) ) ) ) |
| 36 | 1 8 34 29 35 | offval2 | |- ( ph -> ( F oF O ( G oF P H ) ) = ( w e. A |-> ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) |
| 37 | 27 33 36 | 3eqtr4d | |- ( ph -> ( ( F oF R G ) oF T H ) = ( F oF O ( G oF P H ) ) ) |