This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of the zero function. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg20 | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f0 | |- ( RR X. { 0 } ) e. dom S.1 |
|
| 2 | reex | |- RR e. _V |
|
| 3 | 2 | a1i | |- ( T. -> RR e. _V ) |
| 4 | i1ff | |- ( ( RR X. { 0 } ) e. dom S.1 -> ( RR X. { 0 } ) : RR --> RR ) |
|
| 5 | 1 4 | mp1i | |- ( T. -> ( RR X. { 0 } ) : RR --> RR ) |
| 6 | leid | |- ( x e. RR -> x <_ x ) |
|
| 7 | 6 | adantl | |- ( ( T. /\ x e. RR ) -> x <_ x ) |
| 8 | 3 5 7 | caofref | |- ( T. -> ( RR X. { 0 } ) oR <_ ( RR X. { 0 } ) ) |
| 9 | ax-resscn | |- RR C_ CC |
|
| 10 | 9 | a1i | |- ( T. -> RR C_ CC ) |
| 11 | 5 | ffnd | |- ( T. -> ( RR X. { 0 } ) Fn RR ) |
| 12 | 10 11 | 0pledm | |- ( T. -> ( 0p oR <_ ( RR X. { 0 } ) <-> ( RR X. { 0 } ) oR <_ ( RR X. { 0 } ) ) ) |
| 13 | 8 12 | mpbird | |- ( T. -> 0p oR <_ ( RR X. { 0 } ) ) |
| 14 | 13 | mptru | |- 0p oR <_ ( RR X. { 0 } ) |
| 15 | itg2itg1 | |- ( ( ( RR X. { 0 } ) e. dom S.1 /\ 0p oR <_ ( RR X. { 0 } ) ) -> ( S.2 ` ( RR X. { 0 } ) ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
|
| 16 | 1 14 15 | mp2an | |- ( S.2 ` ( RR X. { 0 } ) ) = ( S.1 ` ( RR X. { 0 } ) ) |
| 17 | itg10 | |- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
|
| 18 | 16 17 | eqtri | |- ( S.2 ` ( RR X. { 0 } ) ) = 0 |