This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0mulcl | |- ( ( A e. ( 0 [,) +oo ) /\ B e. ( 0 [,) +oo ) ) -> ( A x. B ) e. ( 0 [,) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrege0 | |- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
|
| 2 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 3 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 4 | 3 | ad2ant2r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A x. B ) e. RR ) |
| 5 | mulge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A x. B ) ) |
|
| 6 | elrege0 | |- ( ( A x. B ) e. ( 0 [,) +oo ) <-> ( ( A x. B ) e. RR /\ 0 <_ ( A x. B ) ) ) |
|
| 7 | 4 5 6 | sylanbrc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A x. B ) e. ( 0 [,) +oo ) ) |
| 8 | 1 2 7 | syl2anb | |- ( ( A e. ( 0 [,) +oo ) /\ B e. ( 0 [,) +oo ) ) -> ( A x. B ) e. ( 0 [,) +oo ) ) |