This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2mulc . (Contributed by Mario Carneiro, 8-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2mulc.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| itg2mulc.3 | |- ( ph -> ( S.2 ` F ) e. RR ) |
||
| itg2mulclem.4 | |- ( ph -> A e. RR+ ) |
||
| Assertion | itg2mulclem | |- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mulc.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 2 | itg2mulc.3 | |- ( ph -> ( S.2 ` F ) e. RR ) |
|
| 3 | itg2mulclem.4 | |- ( ph -> A e. RR+ ) |
|
| 4 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 5 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
|
| 6 | 1 4 5 | sylancl | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
| 7 | 6 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> F : RR --> ( 0 [,] +oo ) ) |
| 8 | simpr | |- ( ( ph /\ f e. dom S.1 ) -> f e. dom S.1 ) |
|
| 9 | 3 | rpreccld | |- ( ph -> ( 1 / A ) e. RR+ ) |
| 10 | 9 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> ( 1 / A ) e. RR+ ) |
| 11 | 10 | rpred | |- ( ( ph /\ f e. dom S.1 ) -> ( 1 / A ) e. RR ) |
| 12 | 8 11 | i1fmulc | |- ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 ) |
| 13 | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) |
|
| 14 | 13 | 3expia | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) |
| 15 | 7 12 14 | syl2anc | |- ( ( ph /\ f e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) |
| 16 | i1ff | |- ( f e. dom S.1 -> f : RR --> RR ) |
|
| 17 | 16 | adantl | |- ( ( ph /\ f e. dom S.1 ) -> f : RR --> RR ) |
| 18 | 17 | ffvelcdmda | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( f ` y ) e. RR ) |
| 19 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 20 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
|
| 21 | 1 19 20 | sylancl | |- ( ph -> F : RR --> RR ) |
| 22 | 21 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> F : RR --> RR ) |
| 23 | 22 | ffvelcdmda | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( F ` y ) e. RR ) |
| 24 | 3 | rpred | |- ( ph -> A e. RR ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. RR ) |
| 26 | 3 | rpgt0d | |- ( ph -> 0 < A ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> 0 < A ) |
| 28 | ledivmul | |- ( ( ( f ` y ) e. RR /\ ( F ` y ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) |
|
| 29 | 18 23 25 27 28 | syl112anc | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) |
| 30 | 18 | recnd | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( f ` y ) e. CC ) |
| 31 | 25 | recnd | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. CC ) |
| 32 | 3 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> A e. RR+ ) |
| 33 | 32 | rpne0d | |- ( ( ph /\ f e. dom S.1 ) -> A =/= 0 ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A =/= 0 ) |
| 35 | 30 31 34 | divrec2d | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( f ` y ) / A ) = ( ( 1 / A ) x. ( f ` y ) ) ) |
| 36 | 35 | breq1d | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 37 | 29 36 | bitr3d | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( f ` y ) <_ ( A x. ( F ` y ) ) <-> ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 38 | 37 | ralbidva | |- ( ( ph /\ f e. dom S.1 ) -> ( A. y e. RR ( f ` y ) <_ ( A x. ( F ` y ) ) <-> A. y e. RR ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 39 | reex | |- RR e. _V |
|
| 40 | 39 | a1i | |- ( ( ph /\ f e. dom S.1 ) -> RR e. _V ) |
| 41 | ovexd | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. _V ) |
|
| 42 | 17 | feqmptd | |- ( ( ph /\ f e. dom S.1 ) -> f = ( y e. RR |-> ( f ` y ) ) ) |
| 43 | 3 | ad2antrr | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. RR+ ) |
| 44 | fconstmpt | |- ( RR X. { A } ) = ( y e. RR |-> A ) |
|
| 45 | 44 | a1i | |- ( ( ph /\ f e. dom S.1 ) -> ( RR X. { A } ) = ( y e. RR |-> A ) ) |
| 46 | 1 | feqmptd | |- ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 47 | 46 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> F = ( y e. RR |-> ( F ` y ) ) ) |
| 48 | 40 43 23 45 47 | offval2 | |- ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { A } ) oF x. F ) = ( y e. RR |-> ( A x. ( F ` y ) ) ) ) |
| 49 | 40 18 41 42 48 | ofrfval2 | |- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) |
| 50 | ovexd | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( 1 / A ) x. ( f ` y ) ) e. _V ) |
|
| 51 | 9 | ad2antrr | |- ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( 1 / A ) e. RR+ ) |
| 52 | fconstmpt | |- ( RR X. { ( 1 / A ) } ) = ( y e. RR |-> ( 1 / A ) ) |
|
| 53 | 52 | a1i | |- ( ( ph /\ f e. dom S.1 ) -> ( RR X. { ( 1 / A ) } ) = ( y e. RR |-> ( 1 / A ) ) ) |
| 54 | 40 51 18 53 42 | offval2 | |- ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { ( 1 / A ) } ) oF x. f ) = ( y e. RR |-> ( ( 1 / A ) x. ( f ` y ) ) ) ) |
| 55 | 40 50 23 54 47 | ofrfval2 | |- ( ( ph /\ f e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F <-> A. y e. RR ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) |
| 56 | 38 49 55 | 3bitr4d | |- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) <-> ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F ) ) |
| 57 | 8 11 | itg1mulc | |- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) = ( ( 1 / A ) x. ( S.1 ` f ) ) ) |
| 58 | itg1cl | |- ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) |
|
| 59 | 58 | adantl | |- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` f ) e. RR ) |
| 60 | 59 | recnd | |- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` f ) e. CC ) |
| 61 | 24 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> A e. RR ) |
| 62 | 61 | recnd | |- ( ( ph /\ f e. dom S.1 ) -> A e. CC ) |
| 63 | 60 62 33 | divrec2d | |- ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` f ) / A ) = ( ( 1 / A ) x. ( S.1 ` f ) ) ) |
| 64 | 57 63 | eqtr4d | |- ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) = ( ( S.1 ` f ) / A ) ) |
| 65 | 64 | breq1d | |- ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) <-> ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) ) ) |
| 66 | 2 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> ( S.2 ` F ) e. RR ) |
| 67 | 26 | adantr | |- ( ( ph /\ f e. dom S.1 ) -> 0 < A ) |
| 68 | ledivmul | |- ( ( ( S.1 ` f ) e. RR /\ ( S.2 ` F ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) <-> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
|
| 69 | 59 66 61 67 68 | syl112anc | |- ( ( ph /\ f e. dom S.1 ) -> ( ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) <-> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 70 | 65 69 | bitr2d | |- ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) <-> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) |
| 71 | 15 56 70 | 3imtr4d | |- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 72 | 71 | ralrimiva | |- ( ph -> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) |
| 73 | ge0mulcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
|
| 74 | 73 | adantl | |- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
| 75 | fconstg | |- ( A e. RR+ -> ( RR X. { A } ) : RR --> { A } ) |
|
| 76 | 3 75 | syl | |- ( ph -> ( RR X. { A } ) : RR --> { A } ) |
| 77 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 78 | rpge0 | |- ( A e. RR+ -> 0 <_ A ) |
|
| 79 | elrege0 | |- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
|
| 80 | 77 78 79 | sylanbrc | |- ( A e. RR+ -> A e. ( 0 [,) +oo ) ) |
| 81 | 3 80 | syl | |- ( ph -> A e. ( 0 [,) +oo ) ) |
| 82 | 81 | snssd | |- ( ph -> { A } C_ ( 0 [,) +oo ) ) |
| 83 | 76 82 | fssd | |- ( ph -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) |
| 84 | 39 | a1i | |- ( ph -> RR e. _V ) |
| 85 | inidm | |- ( RR i^i RR ) = RR |
|
| 86 | 74 83 1 84 84 85 | off | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) |
| 87 | fss | |- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
|
| 88 | 86 4 87 | sylancl | |- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
| 89 | 24 2 | remulcld | |- ( ph -> ( A x. ( S.2 ` F ) ) e. RR ) |
| 90 | 89 | rexrd | |- ( ph -> ( A x. ( S.2 ` F ) ) e. RR* ) |
| 91 | itg2leub | |- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) /\ ( A x. ( S.2 ` F ) ) e. RR* ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) <-> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) ) |
|
| 92 | 88 90 91 | syl2anc | |- ( ph -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) <-> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) ) |
| 93 | 72 92 | mpbird | |- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) |