This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of itg2i1fseq2 : if the integral of F is a real number, then the standard limit relation holds on the integrals of simple functions approaching F . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
||
| itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
||
| itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
||
| itg2i1fseq.6 | |- S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) |
||
| itg2i1fseq3.7 | |- ( ph -> ( S.2 ` F ) e. RR ) |
||
| Assertion | itg2i1fseq3 | |- ( ph -> S ~~> ( S.2 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
|
| 4 | itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
|
| 5 | itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
|
| 6 | itg2i1fseq.6 | |- S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) |
|
| 7 | itg2i1fseq3.7 | |- ( ph -> ( S.2 ` F ) e. RR ) |
|
| 8 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 9 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
|
| 10 | 2 8 9 | sylancl | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
| 11 | 10 | adantr | |- ( ( ph /\ k e. NN ) -> F : RR --> ( 0 [,] +oo ) ) |
| 12 | 3 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( P ` k ) e. dom S.1 ) |
| 13 | 1 2 3 4 5 | itg2i1fseqle | |- ( ( ph /\ k e. NN ) -> ( P ` k ) oR <_ F ) |
| 14 | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( P ` k ) e. dom S.1 /\ ( P ` k ) oR <_ F ) -> ( S.1 ` ( P ` k ) ) <_ ( S.2 ` F ) ) |
|
| 15 | 11 12 13 14 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ ( S.2 ` F ) ) |
| 16 | 1 2 3 4 5 6 7 15 | itg2i1fseq2 | |- ( ph -> S ~~> ( S.2 ` F ) ) |