This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that the function F on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0plef | |- ( F : RR --> ( 0 [,) +oo ) <-> ( F : RR --> RR /\ 0p oR <_ F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 2 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
|
| 3 | 1 2 | mpan2 | |- ( F : RR --> ( 0 [,) +oo ) -> F : RR --> RR ) |
| 4 | ffvelcdm | |- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) e. RR ) |
|
| 5 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 6 | 5 | baib | |- ( ( F ` x ) e. RR -> ( ( F ` x ) e. ( 0 [,) +oo ) <-> 0 <_ ( F ` x ) ) ) |
| 7 | 4 6 | syl | |- ( ( F : RR --> RR /\ x e. RR ) -> ( ( F ` x ) e. ( 0 [,) +oo ) <-> 0 <_ ( F ` x ) ) ) |
| 8 | 7 | ralbidva | |- ( F : RR --> RR -> ( A. x e. RR ( F ` x ) e. ( 0 [,) +oo ) <-> A. x e. RR 0 <_ ( F ` x ) ) ) |
| 9 | ffn | |- ( F : RR --> RR -> F Fn RR ) |
|
| 10 | ffnfv | |- ( F : RR --> ( 0 [,) +oo ) <-> ( F Fn RR /\ A. x e. RR ( F ` x ) e. ( 0 [,) +oo ) ) ) |
|
| 11 | 10 | baib | |- ( F Fn RR -> ( F : RR --> ( 0 [,) +oo ) <-> A. x e. RR ( F ` x ) e. ( 0 [,) +oo ) ) ) |
| 12 | 9 11 | syl | |- ( F : RR --> RR -> ( F : RR --> ( 0 [,) +oo ) <-> A. x e. RR ( F ` x ) e. ( 0 [,) +oo ) ) ) |
| 13 | 0cn | |- 0 e. CC |
|
| 14 | fnconstg | |- ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) |
|
| 15 | 13 14 | ax-mp | |- ( CC X. { 0 } ) Fn CC |
| 16 | df-0p | |- 0p = ( CC X. { 0 } ) |
|
| 17 | 16 | fneq1i | |- ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) |
| 18 | 15 17 | mpbir | |- 0p Fn CC |
| 19 | 18 | a1i | |- ( F : RR --> RR -> 0p Fn CC ) |
| 20 | cnex | |- CC e. _V |
|
| 21 | 20 | a1i | |- ( F : RR --> RR -> CC e. _V ) |
| 22 | reex | |- RR e. _V |
|
| 23 | 22 | a1i | |- ( F : RR --> RR -> RR e. _V ) |
| 24 | ax-resscn | |- RR C_ CC |
|
| 25 | sseqin2 | |- ( RR C_ CC <-> ( CC i^i RR ) = RR ) |
|
| 26 | 24 25 | mpbi | |- ( CC i^i RR ) = RR |
| 27 | 0pval | |- ( x e. CC -> ( 0p ` x ) = 0 ) |
|
| 28 | 27 | adantl | |- ( ( F : RR --> RR /\ x e. CC ) -> ( 0p ` x ) = 0 ) |
| 29 | eqidd | |- ( ( F : RR --> RR /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
|
| 30 | 19 9 21 23 26 28 29 | ofrfval | |- ( F : RR --> RR -> ( 0p oR <_ F <-> A. x e. RR 0 <_ ( F ` x ) ) ) |
| 31 | 8 12 30 | 3bitr4d | |- ( F : RR --> RR -> ( F : RR --> ( 0 [,) +oo ) <-> 0p oR <_ F ) ) |
| 32 | 3 31 | biadanii | |- ( F : RR --> ( 0 [,) +oo ) <-> ( F : RR --> RR /\ 0p oR <_ F ) ) |