This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an extension to the results of itg2i1fseq , if there is an upper bound on the integrals of the simple functions approaching F , then S.2 F is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
||
| itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
||
| itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
||
| itg2i1fseq.6 | |- S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) |
||
| itg2i1fseq2.7 | |- ( ph -> M e. RR ) |
||
| itg2i1fseq2.8 | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ M ) |
||
| Assertion | itg2i1fseq2 | |- ( ph -> S ~~> ( S.2 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
|
| 4 | itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
|
| 5 | itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
|
| 6 | itg2i1fseq.6 | |- S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) |
|
| 7 | itg2i1fseq2.7 | |- ( ph -> M e. RR ) |
|
| 8 | itg2i1fseq2.8 | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ M ) |
|
| 9 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 10 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 11 | 3 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( P ` m ) e. dom S.1 ) |
| 12 | itg1cl | |- ( ( P ` m ) e. dom S.1 -> ( S.1 ` ( P ` m ) ) e. RR ) |
|
| 13 | 11 12 | syl | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. RR ) |
| 14 | 13 6 | fmptd | |- ( ph -> S : NN --> RR ) |
| 15 | 3 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( P ` k ) e. dom S.1 ) |
| 16 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 17 | ffvelcdm | |- ( ( P : NN --> dom S.1 /\ ( k + 1 ) e. NN ) -> ( P ` ( k + 1 ) ) e. dom S.1 ) |
|
| 18 | 3 16 17 | syl2an | |- ( ( ph /\ k e. NN ) -> ( P ` ( k + 1 ) ) e. dom S.1 ) |
| 19 | simpr | |- ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) -> ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) |
|
| 20 | 19 | ralimi | |- ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) -> A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) |
| 21 | 4 20 | syl | |- ( ph -> A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) |
| 22 | fveq2 | |- ( n = k -> ( P ` n ) = ( P ` k ) ) |
|
| 23 | fvoveq1 | |- ( n = k -> ( P ` ( n + 1 ) ) = ( P ` ( k + 1 ) ) ) |
|
| 24 | 22 23 | breq12d | |- ( n = k -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) ) |
| 25 | 24 | rspccva | |- ( ( A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) /\ k e. NN ) -> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) |
| 26 | 21 25 | sylan | |- ( ( ph /\ k e. NN ) -> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) |
| 27 | itg1le | |- ( ( ( P ` k ) e. dom S.1 /\ ( P ` ( k + 1 ) ) e. dom S.1 /\ ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) -> ( S.1 ` ( P ` k ) ) <_ ( S.1 ` ( P ` ( k + 1 ) ) ) ) |
|
| 28 | 15 18 26 27 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ ( S.1 ` ( P ` ( k + 1 ) ) ) ) |
| 29 | 2fveq3 | |- ( m = k -> ( S.1 ` ( P ` m ) ) = ( S.1 ` ( P ` k ) ) ) |
|
| 30 | fvex | |- ( S.1 ` ( P ` k ) ) e. _V |
|
| 31 | 29 6 30 | fvmpt | |- ( k e. NN -> ( S ` k ) = ( S.1 ` ( P ` k ) ) ) |
| 32 | 31 | adantl | |- ( ( ph /\ k e. NN ) -> ( S ` k ) = ( S.1 ` ( P ` k ) ) ) |
| 33 | 2fveq3 | |- ( m = ( k + 1 ) -> ( S.1 ` ( P ` m ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) |
|
| 34 | fvex | |- ( S.1 ` ( P ` ( k + 1 ) ) ) e. _V |
|
| 35 | 33 6 34 | fvmpt | |- ( ( k + 1 ) e. NN -> ( S ` ( k + 1 ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) |
| 36 | 16 35 | syl | |- ( k e. NN -> ( S ` ( k + 1 ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) |
| 37 | 36 | adantl | |- ( ( ph /\ k e. NN ) -> ( S ` ( k + 1 ) ) = ( S.1 ` ( P ` ( k + 1 ) ) ) ) |
| 38 | 28 32 37 | 3brtr4d | |- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ ( S ` ( k + 1 ) ) ) |
| 39 | 32 8 | eqbrtrd | |- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ M ) |
| 40 | 39 | ralrimiva | |- ( ph -> A. k e. NN ( S ` k ) <_ M ) |
| 41 | brralrspcev | |- ( ( M e. RR /\ A. k e. NN ( S ` k ) <_ M ) -> E. z e. RR A. k e. NN ( S ` k ) <_ z ) |
|
| 42 | 7 40 41 | syl2anc | |- ( ph -> E. z e. RR A. k e. NN ( S ` k ) <_ z ) |
| 43 | 9 10 14 38 42 | climsup | |- ( ph -> S ~~> sup ( ran S , RR , < ) ) |
| 44 | 1 2 3 4 5 6 | itg2i1fseq | |- ( ph -> ( S.2 ` F ) = sup ( ran S , RR* , < ) ) |
| 45 | 14 | frnd | |- ( ph -> ran S C_ RR ) |
| 46 | 6 13 | dmmptd | |- ( ph -> dom S = NN ) |
| 47 | 1nn | |- 1 e. NN |
|
| 48 | ne0i | |- ( 1 e. NN -> NN =/= (/) ) |
|
| 49 | 47 48 | mp1i | |- ( ph -> NN =/= (/) ) |
| 50 | 46 49 | eqnetrd | |- ( ph -> dom S =/= (/) ) |
| 51 | dm0rn0 | |- ( dom S = (/) <-> ran S = (/) ) |
|
| 52 | 51 | necon3bii | |- ( dom S =/= (/) <-> ran S =/= (/) ) |
| 53 | 50 52 | sylib | |- ( ph -> ran S =/= (/) ) |
| 54 | ffn | |- ( S : NN --> RR -> S Fn NN ) |
|
| 55 | breq1 | |- ( y = ( S ` k ) -> ( y <_ z <-> ( S ` k ) <_ z ) ) |
|
| 56 | 55 | ralrn | |- ( S Fn NN -> ( A. y e. ran S y <_ z <-> A. k e. NN ( S ` k ) <_ z ) ) |
| 57 | 14 54 56 | 3syl | |- ( ph -> ( A. y e. ran S y <_ z <-> A. k e. NN ( S ` k ) <_ z ) ) |
| 58 | 57 | rexbidv | |- ( ph -> ( E. z e. RR A. y e. ran S y <_ z <-> E. z e. RR A. k e. NN ( S ` k ) <_ z ) ) |
| 59 | 42 58 | mpbird | |- ( ph -> E. z e. RR A. y e. ran S y <_ z ) |
| 60 | supxrre | |- ( ( ran S C_ RR /\ ran S =/= (/) /\ E. z e. RR A. y e. ran S y <_ z ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
|
| 61 | 45 53 59 60 | syl3anc | |- ( ph -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
| 62 | 44 61 | eqtrd | |- ( ph -> ( S.2 ` F ) = sup ( ran S , RR , < ) ) |
| 63 | 43 62 | breqtrrd | |- ( ph -> S ~~> ( S.2 ` F ) ) |