This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subject to the conditions coming from mbfi1fseq , the sequence of simple functions are all less than the target function F . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
||
| itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
||
| itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
||
| Assertion | itg2i1fseqle | |- ( ( ph /\ M e. NN ) -> ( P ` M ) oR <_ F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | itg2i1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | itg2i1fseq.3 | |- ( ph -> P : NN --> dom S.1 ) |
|
| 4 | itg2i1fseq.4 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
|
| 5 | itg2i1fseq.5 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
|
| 6 | fveq2 | |- ( n = M -> ( P ` n ) = ( P ` M ) ) |
|
| 7 | 6 | fveq1d | |- ( n = M -> ( ( P ` n ) ` y ) = ( ( P ` M ) ` y ) ) |
| 8 | eqid | |- ( n e. NN |-> ( ( P ` n ) ` y ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) |
|
| 9 | fvex | |- ( ( P ` M ) ` y ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( M e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` M ) = ( ( P ` M ) ` y ) ) |
| 11 | 10 | ad2antlr | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` M ) = ( ( P ` M ) ` y ) ) |
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | simplr | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> M e. NN ) |
|
| 14 | fveq2 | |- ( x = y -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` y ) ) |
|
| 15 | 14 | mpteq2dv | |- ( x = y -> ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) ) |
| 16 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 17 | 15 16 | breq12d | |- ( x = y -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) ) |
| 18 | 17 | rspccva | |- ( ( A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 19 | 5 18 | sylan | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 20 | 19 | adantlr | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 21 | fveq2 | |- ( n = k -> ( P ` n ) = ( P ` k ) ) |
|
| 22 | 21 | fveq1d | |- ( n = k -> ( ( P ` n ) ` y ) = ( ( P ` k ) ` y ) ) |
| 23 | fvex | |- ( ( P ` k ) ` y ) e. _V |
|
| 24 | 22 8 23 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` k ) = ( ( P ` k ) ` y ) ) |
| 25 | 24 | adantl | |- ( ( ( ph /\ y e. RR ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` k ) = ( ( P ` k ) ` y ) ) |
| 26 | 3 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( P ` k ) e. dom S.1 ) |
| 27 | i1ff | |- ( ( P ` k ) e. dom S.1 -> ( P ` k ) : RR --> RR ) |
|
| 28 | 26 27 | syl | |- ( ( ph /\ k e. NN ) -> ( P ` k ) : RR --> RR ) |
| 29 | 28 | ffvelcdmda | |- ( ( ( ph /\ k e. NN ) /\ y e. RR ) -> ( ( P ` k ) ` y ) e. RR ) |
| 30 | 29 | an32s | |- ( ( ( ph /\ y e. RR ) /\ k e. NN ) -> ( ( P ` k ) ` y ) e. RR ) |
| 31 | 25 30 | eqeltrd | |- ( ( ( ph /\ y e. RR ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` k ) e. RR ) |
| 32 | 31 | adantllr | |- ( ( ( ( ph /\ M e. NN ) /\ y e. RR ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` k ) e. RR ) |
| 33 | simpr | |- ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) -> ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) |
|
| 34 | 33 | ralimi | |- ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) -> A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) |
| 35 | 4 34 | syl | |- ( ph -> A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) |
| 36 | fvoveq1 | |- ( n = k -> ( P ` ( n + 1 ) ) = ( P ` ( k + 1 ) ) ) |
|
| 37 | 21 36 | breq12d | |- ( n = k -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) ) |
| 38 | 37 | rspccva | |- ( ( A. n e. NN ( P ` n ) oR <_ ( P ` ( n + 1 ) ) /\ k e. NN ) -> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) |
| 39 | 35 38 | sylan | |- ( ( ph /\ k e. NN ) -> ( P ` k ) oR <_ ( P ` ( k + 1 ) ) ) |
| 40 | ffn | |- ( ( P ` k ) : RR --> RR -> ( P ` k ) Fn RR ) |
|
| 41 | 26 27 40 | 3syl | |- ( ( ph /\ k e. NN ) -> ( P ` k ) Fn RR ) |
| 42 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 43 | ffvelcdm | |- ( ( P : NN --> dom S.1 /\ ( k + 1 ) e. NN ) -> ( P ` ( k + 1 ) ) e. dom S.1 ) |
|
| 44 | 3 42 43 | syl2an | |- ( ( ph /\ k e. NN ) -> ( P ` ( k + 1 ) ) e. dom S.1 ) |
| 45 | i1ff | |- ( ( P ` ( k + 1 ) ) e. dom S.1 -> ( P ` ( k + 1 ) ) : RR --> RR ) |
|
| 46 | ffn | |- ( ( P ` ( k + 1 ) ) : RR --> RR -> ( P ` ( k + 1 ) ) Fn RR ) |
|
| 47 | 44 45 46 | 3syl | |- ( ( ph /\ k e. NN ) -> ( P ` ( k + 1 ) ) Fn RR ) |
| 48 | reex | |- RR e. _V |
|
| 49 | 48 | a1i | |- ( ( ph /\ k e. NN ) -> RR e. _V ) |
| 50 | inidm | |- ( RR i^i RR ) = RR |
|
| 51 | eqidd | |- ( ( ( ph /\ k e. NN ) /\ y e. RR ) -> ( ( P ` k ) ` y ) = ( ( P ` k ) ` y ) ) |
|
| 52 | eqidd | |- ( ( ( ph /\ k e. NN ) /\ y e. RR ) -> ( ( P ` ( k + 1 ) ) ` y ) = ( ( P ` ( k + 1 ) ) ` y ) ) |
|
| 53 | 41 47 49 49 50 51 52 | ofrfval | |- ( ( ph /\ k e. NN ) -> ( ( P ` k ) oR <_ ( P ` ( k + 1 ) ) <-> A. y e. RR ( ( P ` k ) ` y ) <_ ( ( P ` ( k + 1 ) ) ` y ) ) ) |
| 54 | 39 53 | mpbid | |- ( ( ph /\ k e. NN ) -> A. y e. RR ( ( P ` k ) ` y ) <_ ( ( P ` ( k + 1 ) ) ` y ) ) |
| 55 | 54 | r19.21bi | |- ( ( ( ph /\ k e. NN ) /\ y e. RR ) -> ( ( P ` k ) ` y ) <_ ( ( P ` ( k + 1 ) ) ` y ) ) |
| 56 | 55 | an32s | |- ( ( ( ph /\ y e. RR ) /\ k e. NN ) -> ( ( P ` k ) ` y ) <_ ( ( P ` ( k + 1 ) ) ` y ) ) |
| 57 | fveq2 | |- ( n = ( k + 1 ) -> ( P ` n ) = ( P ` ( k + 1 ) ) ) |
|
| 58 | 57 | fveq1d | |- ( n = ( k + 1 ) -> ( ( P ` n ) ` y ) = ( ( P ` ( k + 1 ) ) ` y ) ) |
| 59 | fvex | |- ( ( P ` ( k + 1 ) ) ` y ) e. _V |
|
| 60 | 58 8 59 | fvmpt | |- ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( k + 1 ) ) = ( ( P ` ( k + 1 ) ) ` y ) ) |
| 61 | 42 60 | syl | |- ( k e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( k + 1 ) ) = ( ( P ` ( k + 1 ) ) ` y ) ) |
| 62 | 61 | adantl | |- ( ( ( ph /\ y e. RR ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( k + 1 ) ) = ( ( P ` ( k + 1 ) ) ` y ) ) |
| 63 | 56 25 62 | 3brtr4d | |- ( ( ( ph /\ y e. RR ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` k ) <_ ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( k + 1 ) ) ) |
| 64 | 63 | adantllr | |- ( ( ( ( ph /\ M e. NN ) /\ y e. RR ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` k ) <_ ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` ( k + 1 ) ) ) |
| 65 | 12 13 20 32 64 | climub | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` M ) <_ ( F ` y ) ) |
| 66 | 11 65 | eqbrtrrd | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> ( ( P ` M ) ` y ) <_ ( F ` y ) ) |
| 67 | 66 | ralrimiva | |- ( ( ph /\ M e. NN ) -> A. y e. RR ( ( P ` M ) ` y ) <_ ( F ` y ) ) |
| 68 | 3 | ffvelcdmda | |- ( ( ph /\ M e. NN ) -> ( P ` M ) e. dom S.1 ) |
| 69 | i1ff | |- ( ( P ` M ) e. dom S.1 -> ( P ` M ) : RR --> RR ) |
|
| 70 | ffn | |- ( ( P ` M ) : RR --> RR -> ( P ` M ) Fn RR ) |
|
| 71 | 68 69 70 | 3syl | |- ( ( ph /\ M e. NN ) -> ( P ` M ) Fn RR ) |
| 72 | 2 | ffnd | |- ( ph -> F Fn RR ) |
| 73 | 72 | adantr | |- ( ( ph /\ M e. NN ) -> F Fn RR ) |
| 74 | 48 | a1i | |- ( ( ph /\ M e. NN ) -> RR e. _V ) |
| 75 | eqidd | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> ( ( P ` M ) ` y ) = ( ( P ` M ) ` y ) ) |
|
| 76 | eqidd | |- ( ( ( ph /\ M e. NN ) /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
|
| 77 | 71 73 74 74 50 75 76 | ofrfval | |- ( ( ph /\ M e. NN ) -> ( ( P ` M ) oR <_ F <-> A. y e. RR ( ( P ` M ) ` y ) <_ ( F ` y ) ) ) |
| 78 | 67 77 | mpbird | |- ( ( ph /\ M e. NN ) -> ( P ` M ) oR <_ F ) |