This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismbf2d.1 | |- ( ph -> F : A --> RR ) |
|
| ismbf2d.2 | |- ( ph -> A e. dom vol ) |
||
| ismbf2d.3 | |- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
||
| ismbf2d.4 | |- ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
||
| Assertion | ismbf2d | |- ( ph -> F e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf2d.1 | |- ( ph -> F : A --> RR ) |
|
| 2 | ismbf2d.2 | |- ( ph -> A e. dom vol ) |
|
| 3 | ismbf2d.3 | |- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
|
| 4 | ismbf2d.4 | |- ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
|
| 5 | elxr | |- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
|
| 6 | oveq1 | |- ( x = +oo -> ( x (,) +oo ) = ( +oo (,) +oo ) ) |
|
| 7 | iooid | |- ( +oo (,) +oo ) = (/) |
|
| 8 | 6 7 | eqtrdi | |- ( x = +oo -> ( x (,) +oo ) = (/) ) |
| 9 | 8 | imaeq2d | |- ( x = +oo -> ( `' F " ( x (,) +oo ) ) = ( `' F " (/) ) ) |
| 10 | ima0 | |- ( `' F " (/) ) = (/) |
|
| 11 | 0mbl | |- (/) e. dom vol |
|
| 12 | 10 11 | eqeltri | |- ( `' F " (/) ) e. dom vol |
| 13 | 9 12 | eqeltrdi | |- ( x = +oo -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 14 | 13 | adantl | |- ( ( ph /\ x = +oo ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 15 | fimacnv | |- ( F : A --> RR -> ( `' F " RR ) = A ) |
|
| 16 | 1 15 | syl | |- ( ph -> ( `' F " RR ) = A ) |
| 17 | 16 2 | eqeltrd | |- ( ph -> ( `' F " RR ) e. dom vol ) |
| 18 | oveq1 | |- ( x = -oo -> ( x (,) +oo ) = ( -oo (,) +oo ) ) |
|
| 19 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 20 | 18 19 | eqtrdi | |- ( x = -oo -> ( x (,) +oo ) = RR ) |
| 21 | 20 | imaeq2d | |- ( x = -oo -> ( `' F " ( x (,) +oo ) ) = ( `' F " RR ) ) |
| 22 | 21 | eleq1d | |- ( x = -oo -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) |
| 23 | 17 22 | syl5ibrcom | |- ( ph -> ( x = -oo -> ( `' F " ( x (,) +oo ) ) e. dom vol ) ) |
| 24 | 23 | imp | |- ( ( ph /\ x = -oo ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 25 | 3 14 24 | 3jaodan | |- ( ( ph /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 26 | 5 25 | sylan2b | |- ( ( ph /\ x e. RR* ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 27 | oveq2 | |- ( x = +oo -> ( -oo (,) x ) = ( -oo (,) +oo ) ) |
|
| 28 | 27 19 | eqtrdi | |- ( x = +oo -> ( -oo (,) x ) = RR ) |
| 29 | 28 | imaeq2d | |- ( x = +oo -> ( `' F " ( -oo (,) x ) ) = ( `' F " RR ) ) |
| 30 | 29 | eleq1d | |- ( x = +oo -> ( ( `' F " ( -oo (,) x ) ) e. dom vol <-> ( `' F " RR ) e. dom vol ) ) |
| 31 | 17 30 | syl5ibrcom | |- ( ph -> ( x = +oo -> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) |
| 32 | 31 | imp | |- ( ( ph /\ x = +oo ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 33 | oveq2 | |- ( x = -oo -> ( -oo (,) x ) = ( -oo (,) -oo ) ) |
|
| 34 | iooid | |- ( -oo (,) -oo ) = (/) |
|
| 35 | 33 34 | eqtrdi | |- ( x = -oo -> ( -oo (,) x ) = (/) ) |
| 36 | 35 | imaeq2d | |- ( x = -oo -> ( `' F " ( -oo (,) x ) ) = ( `' F " (/) ) ) |
| 37 | 36 12 | eqeltrdi | |- ( x = -oo -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 38 | 37 | adantl | |- ( ( ph /\ x = -oo ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 39 | 4 32 38 | 3jaodan | |- ( ( ph /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 40 | 5 39 | sylan2b | |- ( ( ph /\ x e. RR* ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 41 | 1 26 40 | ismbfd | |- ( ph -> F e. MblFn ) |