This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioomax | |- ( -oo (,) +oo ) = RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | |- -oo e. RR* |
|
| 2 | pnfxr | |- +oo e. RR* |
|
| 3 | iooval2 | |- ( ( -oo e. RR* /\ +oo e. RR* ) -> ( -oo (,) +oo ) = { x e. RR | ( -oo < x /\ x < +oo ) } ) |
|
| 4 | 1 2 3 | mp2an | |- ( -oo (,) +oo ) = { x e. RR | ( -oo < x /\ x < +oo ) } |
| 5 | rabid2 | |- ( RR = { x e. RR | ( -oo < x /\ x < +oo ) } <-> A. x e. RR ( -oo < x /\ x < +oo ) ) |
|
| 6 | mnflt | |- ( x e. RR -> -oo < x ) |
|
| 7 | ltpnf | |- ( x e. RR -> x < +oo ) |
|
| 8 | 6 7 | jca | |- ( x e. RR -> ( -oo < x /\ x < +oo ) ) |
| 9 | 5 8 | mprgbir | |- RR = { x e. RR | ( -oo < x /\ x < +oo ) } |
| 10 | 4 9 | eqtr4i | |- ( -oo (,) +oo ) = RR |