This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixxun.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
||
| ixxun.3 | |- ( ( B e. RR* /\ w e. RR* ) -> ( B T w <-> -. w S B ) ) |
||
| ixxun.4 | |- Q = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z U y ) } ) |
||
| ixxun.5 | |- ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w S B /\ B X C ) -> w U C ) ) |
||
| ixxun.6 | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
||
| Assertion | ixxun | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( ( A O B ) u. ( B P C ) ) = ( A Q C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixxun.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
|
| 3 | ixxun.3 | |- ( ( B e. RR* /\ w e. RR* ) -> ( B T w <-> -. w S B ) ) |
|
| 4 | ixxun.4 | |- Q = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z U y ) } ) |
|
| 5 | ixxun.5 | |- ( ( w e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w S B /\ B X C ) -> w U C ) ) |
|
| 6 | ixxun.6 | |- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
|
| 7 | elun | |- ( w e. ( ( A O B ) u. ( B P C ) ) <-> ( w e. ( A O B ) \/ w e. ( B P C ) ) ) |
|
| 8 | simpl1 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> A e. RR* ) |
|
| 9 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> B e. RR* ) |
|
| 10 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 11 | 8 9 10 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 12 | 11 | biimpa | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
| 13 | 12 | simp1d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> w e. RR* ) |
| 14 | 12 | simp2d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> A R w ) |
| 15 | 12 | simp3d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> w S B ) |
| 16 | simplrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> B X C ) |
|
| 17 | 9 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> B e. RR* ) |
| 18 | simpl3 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> C e. RR* ) |
|
| 19 | 18 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> C e. RR* ) |
| 20 | 13 17 19 5 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> ( ( w S B /\ B X C ) -> w U C ) ) |
| 21 | 15 16 20 | mp2and | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> w U C ) |
| 22 | 13 14 21 | 3jca | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
| 23 | 2 | elixx1 | |- ( ( B e. RR* /\ C e. RR* ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
| 24 | 9 18 23 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
| 25 | 24 | biimpa | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> ( w e. RR* /\ B T w /\ w U C ) ) |
| 26 | 25 | simp1d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> w e. RR* ) |
| 27 | simplrl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> A W B ) |
|
| 28 | 25 | simp2d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> B T w ) |
| 29 | 8 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> A e. RR* ) |
| 30 | 9 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> B e. RR* ) |
| 31 | 29 30 26 6 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> ( ( A W B /\ B T w ) -> A R w ) ) |
| 32 | 27 28 31 | mp2and | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> A R w ) |
| 33 | 25 | simp3d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> w U C ) |
| 34 | 26 32 33 | 3jca | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( B P C ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
| 35 | 22 34 | jaodan | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ ( w e. ( A O B ) \/ w e. ( B P C ) ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
| 36 | 4 | elixx1 | |- ( ( A e. RR* /\ C e. RR* ) -> ( w e. ( A Q C ) <-> ( w e. RR* /\ A R w /\ w U C ) ) ) |
| 37 | 8 18 36 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( A Q C ) <-> ( w e. RR* /\ A R w /\ w U C ) ) ) |
| 38 | 37 | biimpar | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ ( w e. RR* /\ A R w /\ w U C ) ) -> w e. ( A Q C ) ) |
| 39 | 35 38 | syldan | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ ( w e. ( A O B ) \/ w e. ( B P C ) ) ) -> w e. ( A Q C ) ) |
| 40 | exmid | |- ( w S B \/ -. w S B ) |
|
| 41 | 37 | biimpa | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. RR* /\ A R w /\ w U C ) ) |
| 42 | 41 | simp1d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> w e. RR* ) |
| 43 | 41 | simp2d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> A R w ) |
| 44 | 42 43 | jca | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. RR* /\ A R w ) ) |
| 45 | df-3an | |- ( ( w e. RR* /\ A R w /\ w S B ) <-> ( ( w e. RR* /\ A R w ) /\ w S B ) ) |
|
| 46 | 11 45 | bitrdi | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( A O B ) <-> ( ( w e. RR* /\ A R w ) /\ w S B ) ) ) |
| 47 | 46 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( A O B ) <-> ( ( w e. RR* /\ A R w ) /\ w S B ) ) ) |
| 48 | 44 47 | mpbirand | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( A O B ) <-> w S B ) ) |
| 49 | 3anan12 | |- ( ( w e. RR* /\ B T w /\ w U C ) <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) |
|
| 50 | 24 49 | bitrdi | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( B P C ) <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) ) |
| 51 | 50 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( B P C ) <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) ) |
| 52 | 41 | simp3d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> w U C ) |
| 53 | 42 52 | jca | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. RR* /\ w U C ) ) |
| 54 | 53 | biantrud | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( B T w <-> ( B T w /\ ( w e. RR* /\ w U C ) ) ) ) |
| 55 | 9 | adantr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> B e. RR* ) |
| 56 | 55 42 3 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( B T w <-> -. w S B ) ) |
| 57 | 51 54 56 | 3bitr2d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( B P C ) <-> -. w S B ) ) |
| 58 | 48 57 | orbi12d | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( ( w e. ( A O B ) \/ w e. ( B P C ) ) <-> ( w S B \/ -. w S B ) ) ) |
| 59 | 40 58 | mpbiri | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) /\ w e. ( A Q C ) ) -> ( w e. ( A O B ) \/ w e. ( B P C ) ) ) |
| 60 | 39 59 | impbida | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( ( w e. ( A O B ) \/ w e. ( B P C ) ) <-> w e. ( A Q C ) ) ) |
| 61 | 7 60 | bitrid | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( w e. ( ( A O B ) u. ( B P C ) ) <-> w e. ( A Q C ) ) ) |
| 62 | 61 | eqrdv | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A W B /\ B X C ) ) -> ( ( A O B ) u. ( B P C ) ) = ( A Q C ) ) |