This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlttr | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | elxr | |- ( C e. RR* <-> ( C e. RR \/ C = +oo \/ C = -oo ) ) |
|
| 3 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 4 | lttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
|
| 5 | 4 | 3expa | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 6 | 5 | an32s | |- ( ( ( A e. RR /\ C e. RR ) /\ B e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 7 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 8 | pnfnlt | |- ( C e. RR* -> -. +oo < C ) |
|
| 9 | 7 8 | syl | |- ( C e. RR -> -. +oo < C ) |
| 10 | 9 | adantr | |- ( ( C e. RR /\ B = +oo ) -> -. +oo < C ) |
| 11 | breq1 | |- ( B = +oo -> ( B < C <-> +oo < C ) ) |
|
| 12 | 11 | adantl | |- ( ( C e. RR /\ B = +oo ) -> ( B < C <-> +oo < C ) ) |
| 13 | 10 12 | mtbird | |- ( ( C e. RR /\ B = +oo ) -> -. B < C ) |
| 14 | 13 | pm2.21d | |- ( ( C e. RR /\ B = +oo ) -> ( B < C -> A < C ) ) |
| 15 | 14 | adantll | |- ( ( ( A e. RR /\ C e. RR ) /\ B = +oo ) -> ( B < C -> A < C ) ) |
| 16 | 15 | adantld | |- ( ( ( A e. RR /\ C e. RR ) /\ B = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 17 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 18 | nltmnf | |- ( A e. RR* -> -. A < -oo ) |
|
| 19 | 17 18 | syl | |- ( A e. RR -> -. A < -oo ) |
| 20 | 19 | adantr | |- ( ( A e. RR /\ B = -oo ) -> -. A < -oo ) |
| 21 | breq2 | |- ( B = -oo -> ( A < B <-> A < -oo ) ) |
|
| 22 | 21 | adantl | |- ( ( A e. RR /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 23 | 20 22 | mtbird | |- ( ( A e. RR /\ B = -oo ) -> -. A < B ) |
| 24 | 23 | pm2.21d | |- ( ( A e. RR /\ B = -oo ) -> ( A < B -> A < C ) ) |
| 25 | 24 | adantlr | |- ( ( ( A e. RR /\ C e. RR ) /\ B = -oo ) -> ( A < B -> A < C ) ) |
| 26 | 25 | adantrd | |- ( ( ( A e. RR /\ C e. RR ) /\ B = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 27 | 6 16 26 | 3jaodan | |- ( ( ( A e. RR /\ C e. RR ) /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 28 | 3 27 | sylan2b | |- ( ( ( A e. RR /\ C e. RR ) /\ B e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 29 | 28 | an32s | |- ( ( ( A e. RR /\ B e. RR* ) /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 30 | ltpnf | |- ( A e. RR -> A < +oo ) |
|
| 31 | 30 | adantr | |- ( ( A e. RR /\ C = +oo ) -> A < +oo ) |
| 32 | breq2 | |- ( C = +oo -> ( A < C <-> A < +oo ) ) |
|
| 33 | 32 | adantl | |- ( ( A e. RR /\ C = +oo ) -> ( A < C <-> A < +oo ) ) |
| 34 | 31 33 | mpbird | |- ( ( A e. RR /\ C = +oo ) -> A < C ) |
| 35 | 34 | adantlr | |- ( ( ( A e. RR /\ B e. RR* ) /\ C = +oo ) -> A < C ) |
| 36 | 35 | a1d | |- ( ( ( A e. RR /\ B e. RR* ) /\ C = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 37 | nltmnf | |- ( B e. RR* -> -. B < -oo ) |
|
| 38 | 37 | adantr | |- ( ( B e. RR* /\ C = -oo ) -> -. B < -oo ) |
| 39 | breq2 | |- ( C = -oo -> ( B < C <-> B < -oo ) ) |
|
| 40 | 39 | adantl | |- ( ( B e. RR* /\ C = -oo ) -> ( B < C <-> B < -oo ) ) |
| 41 | 38 40 | mtbird | |- ( ( B e. RR* /\ C = -oo ) -> -. B < C ) |
| 42 | 41 | pm2.21d | |- ( ( B e. RR* /\ C = -oo ) -> ( B < C -> A < C ) ) |
| 43 | 42 | adantld | |- ( ( B e. RR* /\ C = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 44 | 43 | adantll | |- ( ( ( A e. RR /\ B e. RR* ) /\ C = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 45 | 29 36 44 | 3jaodan | |- ( ( ( A e. RR /\ B e. RR* ) /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 46 | 45 | anasss | |- ( ( A e. RR /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 47 | pnfnlt | |- ( B e. RR* -> -. +oo < B ) |
|
| 48 | 47 | adantl | |- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 49 | breq1 | |- ( A = +oo -> ( A < B <-> +oo < B ) ) |
|
| 50 | 49 | adantr | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 51 | 48 50 | mtbird | |- ( ( A = +oo /\ B e. RR* ) -> -. A < B ) |
| 52 | 51 | pm2.21d | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> A < C ) ) |
| 53 | 52 | adantrd | |- ( ( A = +oo /\ B e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 54 | 53 | adantrr | |- ( ( A = +oo /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 55 | mnflt | |- ( C e. RR -> -oo < C ) |
|
| 56 | 55 | adantl | |- ( ( A = -oo /\ C e. RR ) -> -oo < C ) |
| 57 | breq1 | |- ( A = -oo -> ( A < C <-> -oo < C ) ) |
|
| 58 | 57 | adantr | |- ( ( A = -oo /\ C e. RR ) -> ( A < C <-> -oo < C ) ) |
| 59 | 56 58 | mpbird | |- ( ( A = -oo /\ C e. RR ) -> A < C ) |
| 60 | 59 | a1d | |- ( ( A = -oo /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 61 | 60 | adantlr | |- ( ( ( A = -oo /\ B e. RR* ) /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 62 | mnfltpnf | |- -oo < +oo |
|
| 63 | breq12 | |- ( ( A = -oo /\ C = +oo ) -> ( A < C <-> -oo < +oo ) ) |
|
| 64 | 62 63 | mpbiri | |- ( ( A = -oo /\ C = +oo ) -> A < C ) |
| 65 | 64 | a1d | |- ( ( A = -oo /\ C = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 66 | 65 | adantlr | |- ( ( ( A = -oo /\ B e. RR* ) /\ C = +oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 67 | 43 | adantll | |- ( ( ( A = -oo /\ B e. RR* ) /\ C = -oo ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 68 | 61 66 67 | 3jaodan | |- ( ( ( A = -oo /\ B e. RR* ) /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 69 | 68 | anasss | |- ( ( A = -oo /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 70 | 46 54 69 | 3jaoian | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ ( B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 71 | 70 | 3impb | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* /\ ( C e. RR \/ C = +oo \/ C = -oo ) ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 72 | 2 71 | syl3an3b | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
| 73 | 1 72 | syl3an1b | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> A < C ) ) |