This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixxun.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
||
| ixxun.3 | |- ( ( B e. RR* /\ w e. RR* ) -> ( B T w <-> -. w S B ) ) |
||
| Assertion | ixxdisj | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A O B ) i^i ( B P C ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixxun.2 | |- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
|
| 3 | ixxun.3 | |- ( ( B e. RR* /\ w e. RR* ) -> ( B T w <-> -. w S B ) ) |
|
| 4 | elin | |- ( w e. ( ( A O B ) i^i ( B P C ) ) <-> ( w e. ( A O B ) /\ w e. ( B P C ) ) ) |
|
| 5 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 6 | 5 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 7 | 6 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
| 8 | 7 | simp3d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( A O B ) ) -> w S B ) |
| 9 | 8 | adantrr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( w e. ( A O B ) /\ w e. ( B P C ) ) ) -> w S B ) |
| 10 | 2 | elixx1 | |- ( ( B e. RR* /\ C e. RR* ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
| 11 | 10 | 3adant1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( w e. ( B P C ) <-> ( w e. RR* /\ B T w /\ w U C ) ) ) |
| 12 | 11 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> ( w e. RR* /\ B T w /\ w U C ) ) |
| 13 | 12 | simp2d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> B T w ) |
| 14 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> B e. RR* ) |
|
| 15 | 12 | simp1d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> w e. RR* ) |
| 16 | 14 15 3 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> ( B T w <-> -. w S B ) ) |
| 17 | 13 16 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ w e. ( B P C ) ) -> -. w S B ) |
| 18 | 17 | adantrl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( w e. ( A O B ) /\ w e. ( B P C ) ) ) -> -. w S B ) |
| 19 | 9 18 | pm2.65da | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> -. ( w e. ( A O B ) /\ w e. ( B P C ) ) ) |
| 20 | 19 | pm2.21d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( w e. ( A O B ) /\ w e. ( B P C ) ) -> w e. (/) ) ) |
| 21 | 4 20 | biimtrid | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( w e. ( ( A O B ) i^i ( B P C ) ) -> w e. (/) ) ) |
| 22 | 21 | ssrdv | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A O B ) i^i ( B P C ) ) C_ (/) ) |
| 23 | ss0 | |- ( ( ( A O B ) i^i ( B P C ) ) C_ (/) -> ( ( A O B ) i^i ( B P C ) ) = (/) ) |
|
| 24 | 22 23 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A O B ) i^i ( B P C ) ) = (/) ) |