This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc1 | |- ( ( A e. RR* /\ A e. RR* ) -> ( x e. ( A [,] A ) <-> ( x e. RR* /\ A <_ x /\ x <_ A ) ) ) |
|
| 2 | 1 | anidms | |- ( A e. RR* -> ( x e. ( A [,] A ) <-> ( x e. RR* /\ A <_ x /\ x <_ A ) ) ) |
| 3 | xrlenlt | |- ( ( A e. RR* /\ x e. RR* ) -> ( A <_ x <-> -. x < A ) ) |
|
| 4 | xrlenlt | |- ( ( x e. RR* /\ A e. RR* ) -> ( x <_ A <-> -. A < x ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. RR* /\ x e. RR* ) -> ( x <_ A <-> -. A < x ) ) |
| 6 | xrlttri3 | |- ( ( x e. RR* /\ A e. RR* ) -> ( x = A <-> ( -. x < A /\ -. A < x ) ) ) |
|
| 7 | 6 | biimprd | |- ( ( x e. RR* /\ A e. RR* ) -> ( ( -. x < A /\ -. A < x ) -> x = A ) ) |
| 8 | 7 | ancoms | |- ( ( A e. RR* /\ x e. RR* ) -> ( ( -. x < A /\ -. A < x ) -> x = A ) ) |
| 9 | 8 | expcomd | |- ( ( A e. RR* /\ x e. RR* ) -> ( -. A < x -> ( -. x < A -> x = A ) ) ) |
| 10 | 5 9 | sylbid | |- ( ( A e. RR* /\ x e. RR* ) -> ( x <_ A -> ( -. x < A -> x = A ) ) ) |
| 11 | 10 | com23 | |- ( ( A e. RR* /\ x e. RR* ) -> ( -. x < A -> ( x <_ A -> x = A ) ) ) |
| 12 | 3 11 | sylbid | |- ( ( A e. RR* /\ x e. RR* ) -> ( A <_ x -> ( x <_ A -> x = A ) ) ) |
| 13 | 12 | ex | |- ( A e. RR* -> ( x e. RR* -> ( A <_ x -> ( x <_ A -> x = A ) ) ) ) |
| 14 | 13 | 3impd | |- ( A e. RR* -> ( ( x e. RR* /\ A <_ x /\ x <_ A ) -> x = A ) ) |
| 15 | eleq1a | |- ( A e. RR* -> ( x = A -> x e. RR* ) ) |
|
| 16 | xrleid | |- ( A e. RR* -> A <_ A ) |
|
| 17 | breq2 | |- ( x = A -> ( A <_ x <-> A <_ A ) ) |
|
| 18 | 16 17 | syl5ibrcom | |- ( A e. RR* -> ( x = A -> A <_ x ) ) |
| 19 | breq1 | |- ( x = A -> ( x <_ A <-> A <_ A ) ) |
|
| 20 | 16 19 | syl5ibrcom | |- ( A e. RR* -> ( x = A -> x <_ A ) ) |
| 21 | 15 18 20 | 3jcad | |- ( A e. RR* -> ( x = A -> ( x e. RR* /\ A <_ x /\ x <_ A ) ) ) |
| 22 | 14 21 | impbid | |- ( A e. RR* -> ( ( x e. RR* /\ A <_ x /\ x <_ A ) <-> x = A ) ) |
| 23 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 24 | 22 23 | bitr4di | |- ( A e. RR* -> ( ( x e. RR* /\ A <_ x /\ x <_ A ) <-> x e. { A } ) ) |
| 25 | 2 24 | bitrd | |- ( A e. RR* -> ( x e. ( A [,] A ) <-> x e. { A } ) ) |
| 26 | 25 | eqrdv | |- ( A e. RR* -> ( A [,] A ) = { A } ) |