This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icombl1 | |- ( A e. RR -> ( A [,) +oo ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | pnfxr | |- +oo e. RR* |
|
| 3 | 2 | a1i | |- ( A e. RR -> +oo e. RR* ) |
| 4 | ltpnf | |- ( A e. RR -> A < +oo ) |
|
| 5 | snunioo | |- ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> ( { A } u. ( A (,) +oo ) ) = ( A [,) +oo ) ) |
|
| 6 | 1 3 4 5 | syl3anc | |- ( A e. RR -> ( { A } u. ( A (,) +oo ) ) = ( A [,) +oo ) ) |
| 7 | snssi | |- ( A e. RR -> { A } C_ RR ) |
|
| 8 | ovolsn | |- ( A e. RR -> ( vol* ` { A } ) = 0 ) |
|
| 9 | nulmbl | |- ( ( { A } C_ RR /\ ( vol* ` { A } ) = 0 ) -> { A } e. dom vol ) |
|
| 10 | 7 8 9 | syl2anc | |- ( A e. RR -> { A } e. dom vol ) |
| 11 | ioombl1 | |- ( A e. RR* -> ( A (,) +oo ) e. dom vol ) |
|
| 12 | 1 11 | syl | |- ( A e. RR -> ( A (,) +oo ) e. dom vol ) |
| 13 | unmbl | |- ( ( { A } e. dom vol /\ ( A (,) +oo ) e. dom vol ) -> ( { A } u. ( A (,) +oo ) ) e. dom vol ) |
|
| 14 | 10 12 13 | syl2anc | |- ( A e. RR -> ( { A } u. ( A (,) +oo ) ) e. dom vol ) |
| 15 | 6 14 | eqeltrrd | |- ( A e. RR -> ( A [,) +oo ) e. dom vol ) |