This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nulmbl | |- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A C_ RR ) |
|
| 2 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 3 | inss2 | |- ( x i^i A ) C_ A |
|
| 4 | ovolssnul | |- ( ( ( x i^i A ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( x i^i A ) ) = 0 ) |
|
| 5 | 3 4 | mp3an1 | |- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( x i^i A ) ) = 0 ) |
| 6 | 5 | adantr | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i A ) ) = 0 ) |
| 7 | 6 | oveq1d | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( 0 + ( vol* ` ( x \ A ) ) ) ) |
| 8 | difss | |- ( x \ A ) C_ x |
|
| 9 | ovolsscl | |- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
|
| 10 | 8 9 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 11 | 10 | adantl | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 12 | 11 | recnd | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) e. CC ) |
| 13 | 12 | addlidd | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( 0 + ( vol* ` ( x \ A ) ) ) = ( vol* ` ( x \ A ) ) ) |
| 14 | 7 13 | eqtrd | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( vol* ` ( x \ A ) ) ) |
| 15 | simprl | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> x C_ RR ) |
|
| 16 | ovolss | |- ( ( ( x \ A ) C_ x /\ x C_ RR ) -> ( vol* ` ( x \ A ) ) <_ ( vol* ` x ) ) |
|
| 17 | 8 15 16 | sylancr | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) <_ ( vol* ` x ) ) |
| 18 | 14 17 | eqbrtrd | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
| 19 | 18 | expr | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 20 | 2 19 | sylan2 | |- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 21 | 20 | ralrimiva | |- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 22 | ismbl2 | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
|
| 23 | 1 21 22 | sylanbrc | |- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A e. dom vol ) |