This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of one end of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snunioo | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A e. RR* ) |
|
| 2 | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
|
| 3 | 1 2 | syl | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( A [,] A ) = { A } ) |
| 4 | 3 | uneq1d | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( { A } u. ( A (,) B ) ) ) |
| 5 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> B e. RR* ) |
|
| 6 | 1 | xrleidd | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A <_ A ) |
| 7 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> A < B ) |
|
| 8 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 9 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 10 | xrltnle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w <-> -. w <_ A ) ) |
|
| 11 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 12 | xrlelttr | |- ( ( w e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( w <_ A /\ A < B ) -> w < B ) ) |
|
| 13 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
|
| 14 | 13 | 3adant1 | |- ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
| 15 | 14 | adantld | |- ( ( A e. RR* /\ A e. RR* /\ w e. RR* ) -> ( ( A <_ A /\ A < w ) -> A <_ w ) ) |
| 16 | 8 9 10 11 12 15 | ixxun | |- ( ( ( A e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( A <_ A /\ A < B ) ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) |
| 17 | 1 1 5 6 7 16 | syl32anc | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A [,] A ) u. ( A (,) B ) ) = ( A [,) B ) ) |
| 18 | 4 17 | eqtr3d | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |