This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real between two others is real. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrre2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfle | |- ( A e. RR* -> -oo <_ A ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR* /\ B e. RR* ) -> -oo <_ A ) |
| 3 | mnfxr | |- -oo e. RR* |
|
| 4 | xrlelttr | |- ( ( -oo e. RR* /\ A e. RR* /\ B e. RR* ) -> ( ( -oo <_ A /\ A < B ) -> -oo < B ) ) |
|
| 5 | 3 4 | mp3an1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( -oo <_ A /\ A < B ) -> -oo < B ) ) |
| 6 | 2 5 | mpand | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> -oo < B ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A < B -> -oo < B ) ) |
| 8 | pnfge | |- ( C e. RR* -> C <_ +oo ) |
|
| 9 | 8 | adantl | |- ( ( B e. RR* /\ C e. RR* ) -> C <_ +oo ) |
| 10 | pnfxr | |- +oo e. RR* |
|
| 11 | xrltletr | |- ( ( B e. RR* /\ C e. RR* /\ +oo e. RR* ) -> ( ( B < C /\ C <_ +oo ) -> B < +oo ) ) |
|
| 12 | 10 11 | mp3an3 | |- ( ( B e. RR* /\ C e. RR* ) -> ( ( B < C /\ C <_ +oo ) -> B < +oo ) ) |
| 13 | 9 12 | mpan2d | |- ( ( B e. RR* /\ C e. RR* ) -> ( B < C -> B < +oo ) ) |
| 14 | 13 | 3adant1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B < C -> B < +oo ) ) |
| 15 | 7 14 | anim12d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> ( -oo < B /\ B < +oo ) ) ) |
| 16 | xrrebnd | |- ( B e. RR* -> ( B e. RR <-> ( -oo < B /\ B < +oo ) ) ) |
|
| 17 | 16 | 3ad2ant2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( B e. RR <-> ( -oo < B /\ B < +oo ) ) ) |
| 18 | 15 17 | sylibrd | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ B < C ) -> B e. RR ) ) |
| 19 | 18 | imp | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> B e. RR ) |