This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icombl | |- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | |- ( ( B [,) +oo ) u. ( A [,) B ) ) = ( ( A [,) B ) u. ( B [,) +oo ) ) |
|
| 2 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A e. RR* ) |
| 4 | simplr | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B e. RR* ) |
|
| 5 | pnfxr | |- +oo e. RR* |
|
| 6 | 5 | a1i | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> +oo e. RR* ) |
| 7 | xrltle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
|
| 8 | 2 7 | sylan | |- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
| 9 | 8 | imp | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A <_ B ) |
| 10 | pnfge | |- ( B e. RR* -> B <_ +oo ) |
|
| 11 | 4 10 | syl | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> B <_ +oo ) |
| 12 | icoun | |- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A <_ B /\ B <_ +oo ) ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) |
|
| 13 | 3 4 6 9 11 12 | syl32anc | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) u. ( B [,) +oo ) ) = ( A [,) +oo ) ) |
| 14 | 1 13 | eqtrid | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) ) |
| 15 | ssun1 | |- ( B [,) +oo ) C_ ( ( B [,) +oo ) u. ( A [,) B ) ) |
|
| 16 | 15 14 | sseqtrid | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
| 17 | incom | |- ( ( B [,) +oo ) i^i ( A [,) B ) ) = ( ( A [,) B ) i^i ( B [,) +oo ) ) |
|
| 18 | icodisj | |- ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
|
| 19 | 5 18 | mp3an3 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 20 | 3 4 19 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) B ) i^i ( B [,) +oo ) ) = (/) ) |
| 21 | 17 20 | eqtrid | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) |
| 22 | uneqdifeq | |- ( ( ( B [,) +oo ) C_ ( A [,) +oo ) /\ ( ( B [,) +oo ) i^i ( A [,) B ) ) = (/) ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) |
|
| 23 | 16 21 22 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( ( B [,) +oo ) u. ( A [,) B ) ) = ( A [,) +oo ) <-> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) ) |
| 24 | 14 23 | mpbid | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) = ( A [,) B ) ) |
| 25 | icombl1 | |- ( A e. RR -> ( A [,) +oo ) e. dom vol ) |
|
| 26 | 25 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) +oo ) e. dom vol ) |
| 27 | xrleloe | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
|
| 28 | 4 6 27 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B <_ +oo <-> ( B < +oo \/ B = +oo ) ) ) |
| 29 | 11 28 | mpbid | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo \/ B = +oo ) ) |
| 30 | simpr | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> A < B ) |
|
| 31 | xrre2 | |- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
|
| 32 | 31 | expr | |- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 33 | 3 4 6 30 32 | syl31anc | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B < +oo -> B e. RR ) ) |
| 34 | 33 | orim1d | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( B < +oo \/ B = +oo ) -> ( B e. RR \/ B = +oo ) ) ) |
| 35 | 29 34 | mpd | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B e. RR \/ B = +oo ) ) |
| 36 | icombl1 | |- ( B e. RR -> ( B [,) +oo ) e. dom vol ) |
|
| 37 | oveq1 | |- ( B = +oo -> ( B [,) +oo ) = ( +oo [,) +oo ) ) |
|
| 38 | pnfge | |- ( +oo e. RR* -> +oo <_ +oo ) |
|
| 39 | 5 38 | ax-mp | |- +oo <_ +oo |
| 40 | ico0 | |- ( ( +oo e. RR* /\ +oo e. RR* ) -> ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) ) |
|
| 41 | 5 5 40 | mp2an | |- ( ( +oo [,) +oo ) = (/) <-> +oo <_ +oo ) |
| 42 | 39 41 | mpbir | |- ( +oo [,) +oo ) = (/) |
| 43 | 37 42 | eqtrdi | |- ( B = +oo -> ( B [,) +oo ) = (/) ) |
| 44 | 0mbl | |- (/) e. dom vol |
|
| 45 | 43 44 | eqeltrdi | |- ( B = +oo -> ( B [,) +oo ) e. dom vol ) |
| 46 | 36 45 | jaoi | |- ( ( B e. RR \/ B = +oo ) -> ( B [,) +oo ) e. dom vol ) |
| 47 | 35 46 | syl | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( B [,) +oo ) e. dom vol ) |
| 48 | difmbl | |- ( ( ( A [,) +oo ) e. dom vol /\ ( B [,) +oo ) e. dom vol ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) |
|
| 49 | 26 47 48 | syl2anc | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( ( A [,) +oo ) \ ( B [,) +oo ) ) e. dom vol ) |
| 50 | 24 49 | eqeltrrd | |- ( ( ( A e. RR /\ B e. RR* ) /\ A < B ) -> ( A [,) B ) e. dom vol ) |
| 51 | ico0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
|
| 52 | 2 51 | sylan | |- ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> B <_ A ) ) |
| 53 | simpr | |- ( ( A e. RR /\ B e. RR* ) -> B e. RR* ) |
|
| 54 | 2 | adantr | |- ( ( A e. RR /\ B e. RR* ) -> A e. RR* ) |
| 55 | 53 54 | xrlenltd | |- ( ( A e. RR /\ B e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 56 | 52 55 | bitrd | |- ( ( A e. RR /\ B e. RR* ) -> ( ( A [,) B ) = (/) <-> -. A < B ) ) |
| 57 | 56 | biimpar | |- ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) = (/) ) |
| 58 | 57 44 | eqeltrdi | |- ( ( ( A e. RR /\ B e. RR* ) /\ -. A < B ) -> ( A [,) B ) e. dom vol ) |
| 59 | 50 58 | pm2.61dan | |- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) e. dom vol ) |