This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioo0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = { x e. RR* | ( A < x /\ x < B ) } ) |
|
| 2 | 1 | eqeq1d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> { x e. RR* | ( A < x /\ x < B ) } = (/) ) ) |
| 3 | df-ne | |- ( { x e. RR* | ( A < x /\ x < B ) } =/= (/) <-> -. { x e. RR* | ( A < x /\ x < B ) } = (/) ) |
|
| 4 | rabn0 | |- ( { x e. RR* | ( A < x /\ x < B ) } =/= (/) <-> E. x e. RR* ( A < x /\ x < B ) ) |
|
| 5 | 3 4 | bitr3i | |- ( -. { x e. RR* | ( A < x /\ x < B ) } = (/) <-> E. x e. RR* ( A < x /\ x < B ) ) |
| 6 | xrlttr | |- ( ( A e. RR* /\ x e. RR* /\ B e. RR* ) -> ( ( A < x /\ x < B ) -> A < B ) ) |
|
| 7 | 6 | 3com23 | |- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( ( A < x /\ x < B ) -> A < B ) ) |
| 8 | 7 | 3expa | |- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. RR* ) -> ( ( A < x /\ x < B ) -> A < B ) ) |
| 9 | 8 | rexlimdva | |- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x < B ) -> A < B ) ) |
| 10 | qbtwnxr | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
|
| 11 | qre | |- ( x e. QQ -> x e. RR ) |
|
| 12 | 11 | rexrd | |- ( x e. QQ -> x e. RR* ) |
| 13 | 12 | anim1i | |- ( ( x e. QQ /\ ( A < x /\ x < B ) ) -> ( x e. RR* /\ ( A < x /\ x < B ) ) ) |
| 14 | 13 | reximi2 | |- ( E. x e. QQ ( A < x /\ x < B ) -> E. x e. RR* ( A < x /\ x < B ) ) |
| 15 | 10 14 | syl | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. RR* ( A < x /\ x < B ) ) |
| 16 | 15 | 3expia | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. RR* ( A < x /\ x < B ) ) ) |
| 17 | 9 16 | impbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( E. x e. RR* ( A < x /\ x < B ) <-> A < B ) ) |
| 18 | 5 17 | bitrid | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x < B ) } = (/) <-> A < B ) ) |
| 19 | xrltnle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
|
| 20 | 18 19 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. { x e. RR* | ( A < x /\ x < B ) } = (/) <-> -. B <_ A ) ) |
| 21 | 20 | con4bid | |- ( ( A e. RR* /\ B e. RR* ) -> ( { x e. RR* | ( A < x /\ x < B ) } = (/) <-> B <_ A ) ) |
| 22 | 2 21 | bitrd | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |