This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 3 | xaddval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) ) |
| 5 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 6 | ifnefalse | |- ( A =/= +oo -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( A e. RR -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) |
| 8 | renemnf | |- ( A e. RR -> A =/= -oo ) |
|
| 9 | ifnefalse | |- ( A =/= -oo -> if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( A e. RR -> if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 11 | 7 10 | eqtrd | |- ( A e. RR -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) |
| 12 | renepnf | |- ( B e. RR -> B =/= +oo ) |
|
| 13 | ifnefalse | |- ( B =/= +oo -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = if ( B = -oo , -oo , ( A + B ) ) ) |
|
| 14 | 12 13 | syl | |- ( B e. RR -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = if ( B = -oo , -oo , ( A + B ) ) ) |
| 15 | renemnf | |- ( B e. RR -> B =/= -oo ) |
|
| 16 | ifnefalse | |- ( B =/= -oo -> if ( B = -oo , -oo , ( A + B ) ) = ( A + B ) ) |
|
| 17 | 15 16 | syl | |- ( B e. RR -> if ( B = -oo , -oo , ( A + B ) ) = ( A + B ) ) |
| 18 | 14 17 | eqtrd | |- ( B e. RR -> if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) = ( A + B ) ) |
| 19 | 11 18 | sylan9eq | |- ( ( A e. RR /\ B e. RR ) -> if ( A = +oo , if ( B = -oo , 0 , +oo ) , if ( A = -oo , if ( B = +oo , 0 , -oo ) , if ( B = +oo , +oo , if ( B = -oo , -oo , ( A + B ) ) ) ) ) = ( A + B ) ) |
| 20 | 4 19 | eqtrd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |