This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of common factor in a ratio. (Contributed by NM, 9-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan5 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divid | |- ( ( C e. CC /\ C =/= 0 ) -> ( C / C ) = 1 ) |
|
| 2 | 1 | oveq1d | |- ( ( C e. CC /\ C =/= 0 ) -> ( ( C / C ) x. ( A / B ) ) = ( 1 x. ( A / B ) ) ) |
| 3 | 2 | 3ad2ant3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C / C ) x. ( A / B ) ) = ( 1 x. ( A / B ) ) ) |
| 4 | simp3l | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 5 | simp1 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
|
| 6 | simp3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
|
| 7 | simp2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( B e. CC /\ B =/= 0 ) ) |
|
| 8 | divmuldiv | |- ( ( ( C e. CC /\ A e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) ) -> ( ( C / C ) x. ( A / B ) ) = ( ( C x. A ) / ( C x. B ) ) ) |
|
| 9 | 4 5 6 7 8 | syl22anc | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C / C ) x. ( A / B ) ) = ( ( C x. A ) / ( C x. B ) ) ) |
| 10 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 11 | 10 | 3expb | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) e. CC ) |
| 12 | 11 | mullidd | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 x. ( A / B ) ) = ( A / B ) ) |
| 13 | 12 | 3adant3 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( 1 x. ( A / B ) ) = ( A / B ) ) |
| 14 | 3 9 13 | 3eqtr3d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / ( C x. B ) ) = ( A / B ) ) |