This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal number of a finite set is a finite ordinal. (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 4-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 2 | 1 | biimpi | |- ( A e. Fin -> E. x e. _om A ~~ x ) |
| 3 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 4 | cardid2 | |- ( A e. dom card -> ( card ` A ) ~~ A ) |
|
| 5 | 3 4 | syl | |- ( A e. Fin -> ( card ` A ) ~~ A ) |
| 6 | entr | |- ( ( ( card ` A ) ~~ A /\ A ~~ x ) -> ( card ` A ) ~~ x ) |
|
| 7 | 5 6 | sylan | |- ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) ~~ x ) |
| 8 | cardon | |- ( card ` A ) e. On |
|
| 9 | onomeneq | |- ( ( ( card ` A ) e. On /\ x e. _om ) -> ( ( card ` A ) ~~ x <-> ( card ` A ) = x ) ) |
|
| 10 | 8 9 | mpan | |- ( x e. _om -> ( ( card ` A ) ~~ x <-> ( card ` A ) = x ) ) |
| 11 | 7 10 | imbitrid | |- ( x e. _om -> ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) = x ) ) |
| 12 | eleq1a | |- ( x e. _om -> ( ( card ` A ) = x -> ( card ` A ) e. _om ) ) |
|
| 13 | 11 12 | syld | |- ( x e. _om -> ( ( A e. Fin /\ A ~~ x ) -> ( card ` A ) e. _om ) ) |
| 14 | 13 | expcomd | |- ( x e. _om -> ( A ~~ x -> ( A e. Fin -> ( card ` A ) e. _om ) ) ) |
| 15 | 14 | rexlimiv | |- ( E. x e. _om A ~~ x -> ( A e. Fin -> ( card ` A ) e. _om ) ) |
| 16 | 2 15 | mpcom | |- ( A e. Fin -> ( card ` A ) e. _om ) |