This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnawordex | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B <-> E. x e. _om ( A +o x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( y = B -> ( A +o y ) = ( A +o B ) ) |
|
| 2 | 1 | sseq2d | |- ( y = B -> ( B C_ ( A +o y ) <-> B C_ ( A +o B ) ) ) |
| 3 | simplr | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B e. _om ) |
|
| 4 | nnon | |- ( B e. _om -> B e. On ) |
|
| 5 | 3 4 | syl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B e. On ) |
| 6 | simpll | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> A e. _om ) |
|
| 7 | nnaword2 | |- ( ( B e. _om /\ A e. _om ) -> B C_ ( A +o B ) ) |
|
| 8 | 3 6 7 | syl2anc | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B C_ ( A +o B ) ) |
| 9 | 2 5 8 | elrabd | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B e. { y e. On | B C_ ( A +o y ) } ) |
| 10 | intss1 | |- ( B e. { y e. On | B C_ ( A +o y ) } -> |^| { y e. On | B C_ ( A +o y ) } C_ B ) |
|
| 11 | 9 10 | syl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } C_ B ) |
| 12 | ssrab2 | |- { y e. On | B C_ ( A +o y ) } C_ On |
|
| 13 | 9 | ne0d | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> { y e. On | B C_ ( A +o y ) } =/= (/) ) |
| 14 | oninton | |- ( ( { y e. On | B C_ ( A +o y ) } C_ On /\ { y e. On | B C_ ( A +o y ) } =/= (/) ) -> |^| { y e. On | B C_ ( A +o y ) } e. On ) |
|
| 15 | 12 13 14 | sylancr | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } e. On ) |
| 16 | eloni | |- ( |^| { y e. On | B C_ ( A +o y ) } e. On -> Ord |^| { y e. On | B C_ ( A +o y ) } ) |
|
| 17 | 15 16 | syl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> Ord |^| { y e. On | B C_ ( A +o y ) } ) |
| 18 | ordom | |- Ord _om |
|
| 19 | ordtr2 | |- ( ( Ord |^| { y e. On | B C_ ( A +o y ) } /\ Ord _om ) -> ( ( |^| { y e. On | B C_ ( A +o y ) } C_ B /\ B e. _om ) -> |^| { y e. On | B C_ ( A +o y ) } e. _om ) ) |
|
| 20 | 17 18 19 | sylancl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( ( |^| { y e. On | B C_ ( A +o y ) } C_ B /\ B e. _om ) -> |^| { y e. On | B C_ ( A +o y ) } e. _om ) ) |
| 21 | 11 3 20 | mp2and | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } e. _om ) |
| 22 | nna0 | |- ( A e. _om -> ( A +o (/) ) = A ) |
|
| 23 | 22 | ad2antrr | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o (/) ) = A ) |
| 24 | simpr | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> A C_ B ) |
|
| 25 | 23 24 | eqsstrd | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o (/) ) C_ B ) |
| 26 | oveq2 | |- ( |^| { y e. On | B C_ ( A +o y ) } = (/) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = ( A +o (/) ) ) |
|
| 27 | 26 | sseq1d | |- ( |^| { y e. On | B C_ ( A +o y ) } = (/) -> ( ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B <-> ( A +o (/) ) C_ B ) ) |
| 28 | 25 27 | syl5ibrcom | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( |^| { y e. On | B C_ ( A +o y ) } = (/) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) ) |
| 29 | simprr | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> |^| { y e. On | B C_ ( A +o y ) } = suc x ) |
|
| 30 | 29 | oveq2d | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = ( A +o suc x ) ) |
| 31 | 6 | adantr | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> A e. _om ) |
| 32 | simprl | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> x e. _om ) |
|
| 33 | nnasuc | |- ( ( A e. _om /\ x e. _om ) -> ( A +o suc x ) = suc ( A +o x ) ) |
|
| 34 | 31 32 33 | syl2anc | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o suc x ) = suc ( A +o x ) ) |
| 35 | 30 34 | eqtrd | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = suc ( A +o x ) ) |
| 36 | nnord | |- ( B e. _om -> Ord B ) |
|
| 37 | 3 36 | syl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> Ord B ) |
| 38 | 37 | adantr | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> Ord B ) |
| 39 | nnon | |- ( x e. _om -> x e. On ) |
|
| 40 | 39 | adantr | |- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> x e. On ) |
| 41 | vex | |- x e. _V |
|
| 42 | 41 | sucid | |- x e. suc x |
| 43 | simpr | |- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> |^| { y e. On | B C_ ( A +o y ) } = suc x ) |
|
| 44 | 42 43 | eleqtrrid | |- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> x e. |^| { y e. On | B C_ ( A +o y ) } ) |
| 45 | oveq2 | |- ( y = x -> ( A +o y ) = ( A +o x ) ) |
|
| 46 | 45 | sseq2d | |- ( y = x -> ( B C_ ( A +o y ) <-> B C_ ( A +o x ) ) ) |
| 47 | 46 | onnminsb | |- ( x e. On -> ( x e. |^| { y e. On | B C_ ( A +o y ) } -> -. B C_ ( A +o x ) ) ) |
| 48 | 40 44 47 | sylc | |- ( ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) -> -. B C_ ( A +o x ) ) |
| 49 | 48 | adantl | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> -. B C_ ( A +o x ) ) |
| 50 | nnacl | |- ( ( A e. _om /\ x e. _om ) -> ( A +o x ) e. _om ) |
|
| 51 | 31 32 50 | syl2anc | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o x ) e. _om ) |
| 52 | nnord | |- ( ( A +o x ) e. _om -> Ord ( A +o x ) ) |
|
| 53 | 51 52 | syl | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> Ord ( A +o x ) ) |
| 54 | ordtri1 | |- ( ( Ord B /\ Ord ( A +o x ) ) -> ( B C_ ( A +o x ) <-> -. ( A +o x ) e. B ) ) |
|
| 55 | 38 53 54 | syl2anc | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( B C_ ( A +o x ) <-> -. ( A +o x ) e. B ) ) |
| 56 | 55 | con2bid | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( ( A +o x ) e. B <-> -. B C_ ( A +o x ) ) ) |
| 57 | 49 56 | mpbird | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o x ) e. B ) |
| 58 | ordsucss | |- ( Ord B -> ( ( A +o x ) e. B -> suc ( A +o x ) C_ B ) ) |
|
| 59 | 38 57 58 | sylc | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> suc ( A +o x ) C_ B ) |
| 60 | 35 59 | eqsstrd | |- ( ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) /\ ( x e. _om /\ |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) |
| 61 | 60 | rexlimdvaa | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( E. x e. _om |^| { y e. On | B C_ ( A +o y ) } = suc x -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) ) |
| 62 | nn0suc | |- ( |^| { y e. On | B C_ ( A +o y ) } e. _om -> ( |^| { y e. On | B C_ ( A +o y ) } = (/) \/ E. x e. _om |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) |
|
| 63 | 21 62 | syl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( |^| { y e. On | B C_ ( A +o y ) } = (/) \/ E. x e. _om |^| { y e. On | B C_ ( A +o y ) } = suc x ) ) |
| 64 | 28 61 63 | mpjaod | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) C_ B ) |
| 65 | onint | |- ( ( { y e. On | B C_ ( A +o y ) } C_ On /\ { y e. On | B C_ ( A +o y ) } =/= (/) ) -> |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } ) |
|
| 66 | 12 13 65 | sylancr | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } ) |
| 67 | nfrab1 | |- F/_ y { y e. On | B C_ ( A +o y ) } |
|
| 68 | 67 | nfint | |- F/_ y |^| { y e. On | B C_ ( A +o y ) } |
| 69 | nfcv | |- F/_ y On |
|
| 70 | nfcv | |- F/_ y B |
|
| 71 | nfcv | |- F/_ y A |
|
| 72 | nfcv | |- F/_ y +o |
|
| 73 | 71 72 68 | nfov | |- F/_ y ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 74 | 70 73 | nfss | |- F/ y B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) |
| 75 | oveq2 | |- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( A +o y ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
|
| 76 | 75 | sseq2d | |- ( y = |^| { y e. On | B C_ ( A +o y ) } -> ( B C_ ( A +o y ) <-> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) ) |
| 77 | 68 69 74 76 | elrabf | |- ( |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } <-> ( |^| { y e. On | B C_ ( A +o y ) } e. On /\ B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) ) |
| 78 | 77 | simprbi | |- ( |^| { y e. On | B C_ ( A +o y ) } e. { y e. On | B C_ ( A +o y ) } -> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 79 | 66 78 | syl | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> B C_ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
| 80 | 64 79 | eqssd | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = B ) |
| 81 | oveq2 | |- ( x = |^| { y e. On | B C_ ( A +o y ) } -> ( A +o x ) = ( A +o |^| { y e. On | B C_ ( A +o y ) } ) ) |
|
| 82 | 81 | eqeq1d | |- ( x = |^| { y e. On | B C_ ( A +o y ) } -> ( ( A +o x ) = B <-> ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = B ) ) |
| 83 | 82 | rspcev | |- ( ( |^| { y e. On | B C_ ( A +o y ) } e. _om /\ ( A +o |^| { y e. On | B C_ ( A +o y ) } ) = B ) -> E. x e. _om ( A +o x ) = B ) |
| 84 | 21 80 83 | syl2anc | |- ( ( ( A e. _om /\ B e. _om ) /\ A C_ B ) -> E. x e. _om ( A +o x ) = B ) |
| 85 | 84 | ex | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> E. x e. _om ( A +o x ) = B ) ) |
| 86 | nnaword1 | |- ( ( A e. _om /\ x e. _om ) -> A C_ ( A +o x ) ) |
|
| 87 | 86 | adantlr | |- ( ( ( A e. _om /\ B e. _om ) /\ x e. _om ) -> A C_ ( A +o x ) ) |
| 88 | sseq2 | |- ( ( A +o x ) = B -> ( A C_ ( A +o x ) <-> A C_ B ) ) |
|
| 89 | 87 88 | syl5ibcom | |- ( ( ( A e. _om /\ B e. _om ) /\ x e. _om ) -> ( ( A +o x ) = B -> A C_ B ) ) |
| 90 | 89 | rexlimdva | |- ( ( A e. _om /\ B e. _om ) -> ( E. x e. _om ( A +o x ) = B -> A C_ B ) ) |
| 91 | 85 90 | impbid | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B <-> E. x e. _om ( A +o x ) = B ) ) |