This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addge01 | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> A <_ ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | leadd2 | |- ( ( 0 e. RR /\ B e. RR /\ A e. RR ) -> ( 0 <_ B <-> ( A + 0 ) <_ ( A + B ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( B e. RR /\ A e. RR ) -> ( 0 <_ B <-> ( A + 0 ) <_ ( A + B ) ) ) |
| 4 | 3 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( A + 0 ) <_ ( A + B ) ) ) |
| 5 | recn | |- ( A e. RR -> A e. CC ) |
|
| 6 | 5 | addridd | |- ( A e. RR -> ( A + 0 ) = A ) |
| 7 | 6 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( A + 0 ) = A ) |
| 8 | 7 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A + 0 ) <_ ( A + B ) <-> A <_ ( A + B ) ) ) |
| 9 | 4 8 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ B <-> A <_ ( A + B ) ) ) |