This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of natural numbers. Proposition 8.9 of TakeutiZaring p. 59. Theorem 2.20 of Schloeder p. 6. (Contributed by NM, 20-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = B -> ( A +o x ) = ( A +o B ) ) |
|
| 2 | 1 | eleq1d | |- ( x = B -> ( ( A +o x ) e. _om <-> ( A +o B ) e. _om ) ) |
| 3 | 2 | imbi2d | |- ( x = B -> ( ( A e. _om -> ( A +o x ) e. _om ) <-> ( A e. _om -> ( A +o B ) e. _om ) ) ) |
| 4 | oveq2 | |- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
|
| 5 | 4 | eleq1d | |- ( x = (/) -> ( ( A +o x ) e. _om <-> ( A +o (/) ) e. _om ) ) |
| 6 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 7 | 6 | eleq1d | |- ( x = y -> ( ( A +o x ) e. _om <-> ( A +o y ) e. _om ) ) |
| 8 | oveq2 | |- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
|
| 9 | 8 | eleq1d | |- ( x = suc y -> ( ( A +o x ) e. _om <-> ( A +o suc y ) e. _om ) ) |
| 10 | nna0 | |- ( A e. _om -> ( A +o (/) ) = A ) |
|
| 11 | 10 | eleq1d | |- ( A e. _om -> ( ( A +o (/) ) e. _om <-> A e. _om ) ) |
| 12 | 11 | ibir | |- ( A e. _om -> ( A +o (/) ) e. _om ) |
| 13 | peano2 | |- ( ( A +o y ) e. _om -> suc ( A +o y ) e. _om ) |
|
| 14 | nnasuc | |- ( ( A e. _om /\ y e. _om ) -> ( A +o suc y ) = suc ( A +o y ) ) |
|
| 15 | 14 | eleq1d | |- ( ( A e. _om /\ y e. _om ) -> ( ( A +o suc y ) e. _om <-> suc ( A +o y ) e. _om ) ) |
| 16 | 13 15 | imbitrrid | |- ( ( A e. _om /\ y e. _om ) -> ( ( A +o y ) e. _om -> ( A +o suc y ) e. _om ) ) |
| 17 | 16 | expcom | |- ( y e. _om -> ( A e. _om -> ( ( A +o y ) e. _om -> ( A +o suc y ) e. _om ) ) ) |
| 18 | 5 7 9 12 17 | finds2 | |- ( x e. _om -> ( A e. _om -> ( A +o x ) e. _om ) ) |
| 19 | 3 18 | vtoclga | |- ( B e. _om -> ( A e. _om -> ( A +o B ) e. _om ) ) |
| 20 | 19 | impcom | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |