This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G maps ordinal addition to integer addition. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashgadd.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| Assertion | hashgadd | |- ( ( A e. _om /\ B e. _om ) -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgadd.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | oveq2 | |- ( n = (/) -> ( A +o n ) = ( A +o (/) ) ) |
|
| 3 | 2 | fveq2d | |- ( n = (/) -> ( G ` ( A +o n ) ) = ( G ` ( A +o (/) ) ) ) |
| 4 | fveq2 | |- ( n = (/) -> ( G ` n ) = ( G ` (/) ) ) |
|
| 5 | 4 | oveq2d | |- ( n = (/) -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) |
| 6 | 3 5 | eqeq12d | |- ( n = (/) -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o (/) ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) ) |
| 7 | 6 | imbi2d | |- ( n = (/) -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o (/) ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) ) ) |
| 8 | oveq2 | |- ( n = z -> ( A +o n ) = ( A +o z ) ) |
|
| 9 | 8 | fveq2d | |- ( n = z -> ( G ` ( A +o n ) ) = ( G ` ( A +o z ) ) ) |
| 10 | fveq2 | |- ( n = z -> ( G ` n ) = ( G ` z ) ) |
|
| 11 | 10 | oveq2d | |- ( n = z -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` z ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( n = z -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) ) |
| 13 | 12 | imbi2d | |- ( n = z -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) ) ) |
| 14 | oveq2 | |- ( n = suc z -> ( A +o n ) = ( A +o suc z ) ) |
|
| 15 | 14 | fveq2d | |- ( n = suc z -> ( G ` ( A +o n ) ) = ( G ` ( A +o suc z ) ) ) |
| 16 | fveq2 | |- ( n = suc z -> ( G ` n ) = ( G ` suc z ) ) |
|
| 17 | 16 | oveq2d | |- ( n = suc z -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) |
| 18 | 15 17 | eqeq12d | |- ( n = suc z -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) |
| 19 | 18 | imbi2d | |- ( n = suc z -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) ) |
| 20 | oveq2 | |- ( n = B -> ( A +o n ) = ( A +o B ) ) |
|
| 21 | 20 | fveq2d | |- ( n = B -> ( G ` ( A +o n ) ) = ( G ` ( A +o B ) ) ) |
| 22 | fveq2 | |- ( n = B -> ( G ` n ) = ( G ` B ) ) |
|
| 23 | 22 | oveq2d | |- ( n = B -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` B ) ) ) |
| 24 | 21 23 | eqeq12d | |- ( n = B -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) ) |
| 25 | 24 | imbi2d | |- ( n = B -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) ) ) |
| 26 | 1 | hashgf1o | |- G : _om -1-1-onto-> NN0 |
| 27 | f1of | |- ( G : _om -1-1-onto-> NN0 -> G : _om --> NN0 ) |
|
| 28 | 26 27 | ax-mp | |- G : _om --> NN0 |
| 29 | 28 | ffvelcdmi | |- ( A e. _om -> ( G ` A ) e. NN0 ) |
| 30 | 29 | nn0cnd | |- ( A e. _om -> ( G ` A ) e. CC ) |
| 31 | 30 | addridd | |- ( A e. _om -> ( ( G ` A ) + 0 ) = ( G ` A ) ) |
| 32 | 0z | |- 0 e. ZZ |
|
| 33 | 32 1 | om2uz0i | |- ( G ` (/) ) = 0 |
| 34 | 33 | oveq2i | |- ( ( G ` A ) + ( G ` (/) ) ) = ( ( G ` A ) + 0 ) |
| 35 | 34 | a1i | |- ( A e. _om -> ( ( G ` A ) + ( G ` (/) ) ) = ( ( G ` A ) + 0 ) ) |
| 36 | nna0 | |- ( A e. _om -> ( A +o (/) ) = A ) |
|
| 37 | 36 | fveq2d | |- ( A e. _om -> ( G ` ( A +o (/) ) ) = ( G ` A ) ) |
| 38 | 31 35 37 | 3eqtr4rd | |- ( A e. _om -> ( G ` ( A +o (/) ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) |
| 39 | nnasuc | |- ( ( A e. _om /\ z e. _om ) -> ( A +o suc z ) = suc ( A +o z ) ) |
|
| 40 | 39 | fveq2d | |- ( ( A e. _om /\ z e. _om ) -> ( G ` ( A +o suc z ) ) = ( G ` suc ( A +o z ) ) ) |
| 41 | nnacl | |- ( ( A e. _om /\ z e. _om ) -> ( A +o z ) e. _om ) |
|
| 42 | 32 1 | om2uzsuci | |- ( ( A +o z ) e. _om -> ( G ` suc ( A +o z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
| 43 | 41 42 | syl | |- ( ( A e. _om /\ z e. _om ) -> ( G ` suc ( A +o z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
| 44 | 40 43 | eqtrd | |- ( ( A e. _om /\ z e. _om ) -> ( G ` ( A +o suc z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
| 45 | 44 | 3adant3 | |- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
| 46 | 28 | ffvelcdmi | |- ( z e. _om -> ( G ` z ) e. NN0 ) |
| 47 | 46 | nn0cnd | |- ( z e. _om -> ( G ` z ) e. CC ) |
| 48 | ax-1cn | |- 1 e. CC |
|
| 49 | addass | |- ( ( ( G ` A ) e. CC /\ ( G ` z ) e. CC /\ 1 e. CC ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
|
| 50 | 48 49 | mp3an3 | |- ( ( ( G ` A ) e. CC /\ ( G ` z ) e. CC ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
| 51 | 30 47 50 | syl2an | |- ( ( A e. _om /\ z e. _om ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
| 52 | 51 | 3adant3 | |- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
| 53 | oveq1 | |- ( ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) -> ( ( G ` ( A +o z ) ) + 1 ) = ( ( ( G ` A ) + ( G ` z ) ) + 1 ) ) |
|
| 54 | 53 | 3ad2ant3 | |- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( G ` ( A +o z ) ) + 1 ) = ( ( ( G ` A ) + ( G ` z ) ) + 1 ) ) |
| 55 | 32 1 | om2uzsuci | |- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
| 56 | 55 | oveq2d | |- ( z e. _om -> ( ( G ` A ) + ( G ` suc z ) ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
| 57 | 56 | 3ad2ant2 | |- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( G ` A ) + ( G ` suc z ) ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
| 58 | 52 54 57 | 3eqtr4d | |- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( G ` ( A +o z ) ) + 1 ) = ( ( G ` A ) + ( G ` suc z ) ) ) |
| 59 | 45 58 | eqtrd | |- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) |
| 60 | 59 | 3expia | |- ( ( A e. _om /\ z e. _om ) -> ( ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) |
| 61 | 60 | expcom | |- ( z e. _om -> ( A e. _om -> ( ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) ) |
| 62 | 61 | a2d | |- ( z e. _om -> ( ( A e. _om -> ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( A e. _om -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) ) |
| 63 | 7 13 19 25 38 62 | finds | |- ( B e. _om -> ( A e. _om -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) ) |
| 64 | 63 | impcom | |- ( ( A e. _om /\ B e. _om ) -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) |