This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-strict order relation of the # function on the full cardinal poset. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdomi | |- ( A ~<_ B -> ( # ` A ) <_ ( # ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A ~<_ B /\ A e. Fin ) -> A ~<_ B ) |
|
| 2 | simpr | |- ( ( A ~<_ B /\ A e. Fin ) -> A e. Fin ) |
|
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 5 | 4 | adantr | |- ( ( A ~<_ B /\ A e. Fin ) -> B e. _V ) |
| 6 | hashdom | |- ( ( A e. Fin /\ B e. _V ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
|
| 7 | 2 5 6 | syl2anc | |- ( ( A ~<_ B /\ A e. Fin ) -> ( ( # ` A ) <_ ( # ` B ) <-> A ~<_ B ) ) |
| 8 | 1 7 | mpbird | |- ( ( A ~<_ B /\ A e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |
| 9 | pnfxr | |- +oo e. RR* |
|
| 10 | pnfge | |- ( +oo e. RR* -> +oo <_ +oo ) |
|
| 11 | 9 10 | mp1i | |- ( ( A ~<_ B /\ -. A e. Fin ) -> +oo <_ +oo ) |
| 12 | 3 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 13 | hashinf | |- ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
|
| 14 | 12 13 | sylan | |- ( ( A ~<_ B /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 15 | 4 | adantr | |- ( ( A ~<_ B /\ -. A e. Fin ) -> B e. _V ) |
| 16 | domfi | |- ( ( B e. Fin /\ A ~<_ B ) -> A e. Fin ) |
|
| 17 | 16 | stoic1b | |- ( ( A ~<_ B /\ -. A e. Fin ) -> -. B e. Fin ) |
| 18 | hashinf | |- ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( A ~<_ B /\ -. A e. Fin ) -> ( # ` B ) = +oo ) |
| 20 | 11 14 19 | 3brtr4d | |- ( ( A ~<_ B /\ -. A e. Fin ) -> ( # ` A ) <_ ( # ` B ) ) |
| 21 | 8 20 | pm2.61dan | |- ( A ~<_ B -> ( # ` A ) <_ ( # ` B ) ) |