This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance relation. (Contributed by NM, 15-Jun-1998) Extract brdom2g as an intermediate result. (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brdomg | |- ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2g | |- ( ( A e. _V /\ B e. C ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
|
| 2 | 1 | ex | |- ( A e. _V -> ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 5 | f1f | |- ( f : A -1-1-> B -> f : A --> B ) |
|
| 6 | fdm | |- ( f : A --> B -> dom f = A ) |
|
| 7 | vex | |- f e. _V |
|
| 8 | 7 | dmex | |- dom f e. _V |
| 9 | 6 8 | eqeltrrdi | |- ( f : A --> B -> A e. _V ) |
| 10 | 5 9 | syl | |- ( f : A -1-1-> B -> A e. _V ) |
| 11 | 10 | exlimiv | |- ( E. f f : A -1-1-> B -> A e. _V ) |
| 12 | 4 11 | pm5.21ni | |- ( -. A e. _V -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
| 13 | 12 | a1d | |- ( -. A e. _V -> ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) ) |
| 14 | 2 13 | pm2.61i | |- ( B e. C -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |