This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom , which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | carddom2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carddomi2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) ) |
|
| 2 | brdom2 | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
|
| 3 | cardon | |- ( card ` A ) e. On |
|
| 4 | 3 | onelssi | |- ( ( card ` B ) e. ( card ` A ) -> ( card ` B ) C_ ( card ` A ) ) |
| 5 | carddomi2 | |- ( ( B e. dom card /\ A e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) ) |
|
| 6 | 5 | ancoms | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) ) |
| 7 | domnsym | |- ( B ~<_ A -> -. A ~< B ) |
|
| 8 | 4 6 7 | syl56 | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) e. ( card ` A ) -> -. A ~< B ) ) |
| 9 | 8 | con2d | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> -. ( card ` B ) e. ( card ` A ) ) ) |
| 10 | cardon | |- ( card ` B ) e. On |
|
| 11 | ontri1 | |- ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) ) |
|
| 12 | 3 10 11 | mp2an | |- ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) |
| 13 | 9 12 | imbitrrdi | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> ( card ` A ) C_ ( card ` B ) ) ) |
| 14 | carden2b | |- ( A ~~ B -> ( card ` A ) = ( card ` B ) ) |
|
| 15 | eqimss | |- ( ( card ` A ) = ( card ` B ) -> ( card ` A ) C_ ( card ` B ) ) |
|
| 16 | 14 15 | syl | |- ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) |
| 17 | 16 | a1i | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) ) |
| 18 | 13 17 | jaod | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( A ~< B \/ A ~~ B ) -> ( card ` A ) C_ ( card ` B ) ) ) |
| 19 | 2 18 | biimtrid | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B -> ( card ` A ) C_ ( card ` B ) ) ) |
| 20 | 1 19 | impbid | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |