This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the # function in terms of the mapping G from _om to NN0 . The proof avoids the use of ax-ac . (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashgval.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| Assertion | hashgval | |- ( A e. Fin -> ( G ` ( card ` A ) ) = ( # ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgval.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | resundir | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` Fin ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) ) |
|
| 3 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 4 | eqid | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
|
| 5 | 3 4 | hashkf | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 |
| 6 | ffn | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin ) |
|
| 7 | fnresdm | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) ) |
|
| 8 | 5 6 7 | mp2b | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
| 9 | disjdifr | |- ( ( _V \ Fin ) i^i Fin ) = (/) |
|
| 10 | pnfex | |- +oo e. _V |
|
| 11 | 10 | fconst | |- ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } |
| 12 | ffn | |- ( ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } -> ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) ) |
|
| 13 | fnresdisj | |- ( ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) -> ( ( ( _V \ Fin ) i^i Fin ) = (/) <-> ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) = (/) ) ) |
|
| 14 | 11 12 13 | mp2b | |- ( ( ( _V \ Fin ) i^i Fin ) = (/) <-> ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) = (/) ) |
| 15 | 9 14 | mpbi | |- ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) = (/) |
| 16 | 8 15 | uneq12i | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. (/) ) |
| 17 | un0 | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. (/) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
|
| 18 | 16 17 | eqtri | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` Fin ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` Fin ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
| 19 | 2 18 | eqtri | |- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` Fin ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
| 20 | df-hash | |- # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |
|
| 21 | 20 | reseq1i | |- ( # |` Fin ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` Fin ) |
| 22 | 1 | coeq1i | |- ( G o. card ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
| 23 | 19 21 22 | 3eqtr4i | |- ( # |` Fin ) = ( G o. card ) |
| 24 | 23 | fveq1i | |- ( ( # |` Fin ) ` A ) = ( ( G o. card ) ` A ) |
| 25 | cardf2 | |- card : { x | E. y e. On y ~~ x } --> On |
|
| 26 | ffun | |- ( card : { x | E. y e. On y ~~ x } --> On -> Fun card ) |
|
| 27 | 25 26 | ax-mp | |- Fun card |
| 28 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 29 | fvco | |- ( ( Fun card /\ A e. dom card ) -> ( ( G o. card ) ` A ) = ( G ` ( card ` A ) ) ) |
|
| 30 | 27 28 29 | sylancr | |- ( A e. Fin -> ( ( G o. card ) ` A ) = ( G ` ( card ` A ) ) ) |
| 31 | 24 30 | eqtrid | |- ( A e. Fin -> ( ( # |` Fin ) ` A ) = ( G ` ( card ` A ) ) ) |
| 32 | fvres | |- ( A e. Fin -> ( ( # |` Fin ) ` A ) = ( # ` A ) ) |
|
| 33 | 31 32 | eqtr3d | |- ( A e. Fin -> ( G ` ( card ` A ) ) = ( # ` A ) ) |