This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isinffi | |- ( ( -. A e. Fin /\ B e. Fin ) -> E. f f : B -1-1-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardom | |- ( B e. Fin -> ( card ` B ) e. _om ) |
|
| 2 | isinf | |- ( -. A e. Fin -> A. a e. _om E. c ( c C_ A /\ c ~~ a ) ) |
|
| 3 | breq2 | |- ( a = ( card ` B ) -> ( c ~~ a <-> c ~~ ( card ` B ) ) ) |
|
| 4 | 3 | anbi2d | |- ( a = ( card ` B ) -> ( ( c C_ A /\ c ~~ a ) <-> ( c C_ A /\ c ~~ ( card ` B ) ) ) ) |
| 5 | 4 | exbidv | |- ( a = ( card ` B ) -> ( E. c ( c C_ A /\ c ~~ a ) <-> E. c ( c C_ A /\ c ~~ ( card ` B ) ) ) ) |
| 6 | 5 | rspcva | |- ( ( ( card ` B ) e. _om /\ A. a e. _om E. c ( c C_ A /\ c ~~ a ) ) -> E. c ( c C_ A /\ c ~~ ( card ` B ) ) ) |
| 7 | 1 2 6 | syl2anr | |- ( ( -. A e. Fin /\ B e. Fin ) -> E. c ( c C_ A /\ c ~~ ( card ` B ) ) ) |
| 8 | simprr | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> c ~~ ( card ` B ) ) |
|
| 9 | ficardid | |- ( B e. Fin -> ( card ` B ) ~~ B ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> ( card ` B ) ~~ B ) |
| 11 | entr | |- ( ( c ~~ ( card ` B ) /\ ( card ` B ) ~~ B ) -> c ~~ B ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> c ~~ B ) |
| 13 | 12 | ensymd | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> B ~~ c ) |
| 14 | bren | |- ( B ~~ c <-> E. f f : B -1-1-onto-> c ) |
|
| 15 | 13 14 | sylib | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> E. f f : B -1-1-onto-> c ) |
| 16 | f1of1 | |- ( f : B -1-1-onto-> c -> f : B -1-1-> c ) |
|
| 17 | simplrl | |- ( ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) /\ f : B -1-1-onto-> c ) -> c C_ A ) |
|
| 18 | f1ss | |- ( ( f : B -1-1-> c /\ c C_ A ) -> f : B -1-1-> A ) |
|
| 19 | 16 17 18 | syl2an2 | |- ( ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) /\ f : B -1-1-onto-> c ) -> f : B -1-1-> A ) |
| 20 | 19 | ex | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> ( f : B -1-1-onto-> c -> f : B -1-1-> A ) ) |
| 21 | 20 | eximdv | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> ( E. f f : B -1-1-onto-> c -> E. f f : B -1-1-> A ) ) |
| 22 | 15 21 | mpd | |- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> E. f f : B -1-1-> A ) |
| 23 | 7 22 | exlimddv | |- ( ( -. A e. Fin /\ B e. Fin ) -> E. f f : B -1-1-> A ) |