This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gexex . (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexex.1 | |- X = ( Base ` G ) |
|
| gexex.2 | |- E = ( gEx ` G ) |
||
| gexex.3 | |- O = ( od ` G ) |
||
| gexexlem.1 | |- ( ph -> G e. Abel ) |
||
| gexexlem.2 | |- ( ph -> E e. NN ) |
||
| gexexlem.3 | |- ( ph -> A e. X ) |
||
| gexexlem.4 | |- ( ( ph /\ y e. X ) -> ( O ` y ) <_ ( O ` A ) ) |
||
| Assertion | gexexlem | |- ( ph -> ( O ` A ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexex.1 | |- X = ( Base ` G ) |
|
| 2 | gexex.2 | |- E = ( gEx ` G ) |
|
| 3 | gexex.3 | |- O = ( od ` G ) |
|
| 4 | gexexlem.1 | |- ( ph -> G e. Abel ) |
|
| 5 | gexexlem.2 | |- ( ph -> E e. NN ) |
|
| 6 | gexexlem.3 | |- ( ph -> A e. X ) |
|
| 7 | gexexlem.4 | |- ( ( ph /\ y e. X ) -> ( O ` y ) <_ ( O ` A ) ) |
|
| 8 | 1 3 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 9 | 6 8 | syl | |- ( ph -> ( O ` A ) e. NN0 ) |
| 10 | 5 | nnnn0d | |- ( ph -> E e. NN0 ) |
| 11 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. Grp ) |
| 13 | 1 2 3 | gexod | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |
| 14 | 12 6 13 | syl2anc | |- ( ph -> ( O ` A ) || E ) |
| 15 | 4 | ad2antrr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> G e. Abel ) |
| 16 | 12 | ad2antrr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> G e. Grp ) |
| 17 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 18 | 17 | adantl | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. NN ) |
| 19 | simpr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. Prime ) |
|
| 20 | 5 | ad2antrr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> E e. NN ) |
| 21 | 6 | ad2antrr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> A e. X ) |
| 22 | 1 2 3 | gexnnod | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN ) |
| 23 | 16 20 21 22 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) e. NN ) |
| 24 | 19 23 | pccld | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` A ) ) e. NN0 ) |
| 25 | 18 24 | nnexpcld | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) e. NN ) |
| 26 | 25 | nnzd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) e. ZZ ) |
| 27 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 28 | 1 27 | mulgcl | |- ( ( G e. Grp /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. ZZ /\ A e. X ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X ) |
| 29 | 16 26 21 28 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X ) |
| 30 | simplr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> x e. X ) |
|
| 31 | 1 2 3 | gexnnod | |- ( ( G e. Grp /\ E e. NN /\ x e. X ) -> ( O ` x ) e. NN ) |
| 32 | 16 20 30 31 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` x ) e. NN ) |
| 33 | pcdvds | |- ( ( p e. Prime /\ ( O ` x ) e. NN ) -> ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) ) |
|
| 34 | 19 32 33 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) ) |
| 35 | 19 32 | pccld | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` x ) ) e. NN0 ) |
| 36 | 18 35 | nnexpcld | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. NN ) |
| 37 | nndivdvds | |- ( ( ( O ` x ) e. NN /\ ( p ^ ( p pCnt ( O ` x ) ) ) e. NN ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN ) ) |
|
| 38 | 32 36 37 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) || ( O ` x ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN ) ) |
| 39 | 34 38 | mpbid | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN ) |
| 40 | 39 | nnzd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ ) |
| 41 | 1 27 | mulgcl | |- ( ( G e. Grp /\ ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ /\ x e. X ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) |
| 42 | 16 40 30 41 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) |
| 43 | 1 3 27 | odmulg | |- ( ( G e. Grp /\ A e. X /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. ZZ ) -> ( O ` A ) = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
| 44 | 16 21 26 43 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
| 45 | pcdvds | |- ( ( p e. Prime /\ ( O ` A ) e. NN ) -> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) |
|
| 46 | 19 23 45 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) |
| 47 | gcdeq | |- ( ( ( p ^ ( p pCnt ( O ` A ) ) ) e. NN /\ ( O ` A ) e. NN ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) = ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) ) |
|
| 48 | 25 23 47 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) = ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) ) ) |
| 49 | 46 48 | mpbird | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) = ( p ^ ( p pCnt ( O ` A ) ) ) ) |
| 50 | 49 | oveq1d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) gcd ( O ` A ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) = ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
| 51 | 44 50 | eqtrd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) = ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) ) |
| 52 | 51 | oveq1d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
| 53 | 1 2 3 | gexnnod | |- ( ( G e. Grp /\ E e. NN /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) e. NN ) |
| 54 | 16 20 29 53 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) e. NN ) |
| 55 | 54 | nncnd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) e. CC ) |
| 56 | 25 | nncnd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) e. CC ) |
| 57 | 25 | nnne0d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` A ) ) ) =/= 0 ) |
| 58 | 55 56 57 | divcan3d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) x. ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) = ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) ) |
| 59 | 52 58 | eqtr2d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) = ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
| 60 | 1 2 3 | gexnnod | |- ( ( G e. Grp /\ E e. NN /\ ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. NN ) |
| 61 | 16 20 42 60 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. NN ) |
| 62 | 61 | nncnd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. CC ) |
| 63 | 36 | nncnd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. CC ) |
| 64 | 39 | nncnd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. CC ) |
| 65 | 39 | nnne0d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) =/= 0 ) |
| 66 | 32 | nncnd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` x ) e. CC ) |
| 67 | 36 | nnne0d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) =/= 0 ) |
| 68 | 66 63 67 | divcan1d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) = ( O ` x ) ) |
| 69 | 1 3 27 | odmulg | |- ( ( G e. Grp /\ x e. X /\ ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ ) -> ( O ` x ) = ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
| 70 | 16 30 40 69 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` x ) = ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
| 71 | 36 | nnzd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. ZZ ) |
| 72 | dvdsmul1 | |- ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. ZZ /\ ( p ^ ( p pCnt ( O ` x ) ) ) e. ZZ ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
|
| 73 | 40 71 72 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 74 | 73 68 | breqtrd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( O ` x ) ) |
| 75 | gcdeq | |- ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) e. NN /\ ( O ` x ) e. NN ) -> ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) = ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( O ` x ) ) ) |
|
| 76 | 39 32 75 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) = ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) <-> ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) || ( O ` x ) ) ) |
| 77 | 74 76 | mpbird | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) = ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 78 | 77 | oveq1d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) gcd ( O ` x ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
| 79 | 68 70 78 | 3eqtrrd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 80 | 62 63 64 65 79 | mulcanad | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) = ( p ^ ( p pCnt ( O ` x ) ) ) ) |
| 81 | 59 80 | oveq12d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) gcd ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) gcd ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 82 | nndivdvds | |- ( ( ( O ` A ) e. NN /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. NN ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. NN ) ) |
|
| 83 | 23 25 82 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` A ) ) ) || ( O ` A ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. NN ) ) |
| 84 | 46 83 | mpbid | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. NN ) |
| 85 | 84 | nnzd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. ZZ ) |
| 86 | 85 71 | gcdcomd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) gcd ( p ^ ( p pCnt ( O ` x ) ) ) ) = ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) ) |
| 87 | pcndvds2 | |- ( ( p e. Prime /\ ( O ` A ) e. NN ) -> -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
|
| 88 | 19 23 87 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
| 89 | coprm | |- ( ( p e. Prime /\ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. ZZ ) -> ( -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <-> ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
|
| 90 | 19 85 89 | syl2anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( -. p || ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <-> ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
| 91 | 88 90 | mpbid | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) |
| 92 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 93 | 92 | adantl | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. ZZ ) |
| 94 | rpexp1i | |- ( ( p e. ZZ /\ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. ZZ /\ ( p pCnt ( O ` x ) ) e. NN0 ) -> ( ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 -> ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
|
| 95 | 93 85 35 94 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 -> ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) ) |
| 96 | 91 95 | mpd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) gcd ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) ) = 1 ) |
| 97 | 81 86 96 | 3eqtrd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) gcd ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = 1 ) |
| 98 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 99 | 3 1 98 | odadd | |- ( ( ( G e. Abel /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X /\ ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) /\ ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) gcd ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = 1 ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
| 100 | 15 29 42 97 99 | syl31anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
| 101 | 59 80 | oveq12d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ) x. ( O ` ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 102 | 100 101 | eqtrd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) = ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 103 | fveq2 | |- ( y = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) -> ( O ` y ) = ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) ) |
|
| 104 | 103 | breq1d | |- ( y = ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) -> ( ( O ` y ) <_ ( O ` A ) <-> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) <_ ( O ` A ) ) ) |
| 105 | 7 | ralrimiva | |- ( ph -> A. y e. X ( O ` y ) <_ ( O ` A ) ) |
| 106 | 105 | ad2antrr | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> A. y e. X ( O ` y ) <_ ( O ` A ) ) |
| 107 | 1 98 | grpcl | |- ( ( G e. Grp /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) e. X /\ ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) e. X ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. X ) |
| 108 | 16 29 42 107 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) e. X ) |
| 109 | 104 106 108 | rspcdva | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` ( ( ( p ^ ( p pCnt ( O ` A ) ) ) ( .g ` G ) A ) ( +g ` G ) ( ( ( O ` x ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ( .g ` G ) x ) ) ) <_ ( O ` A ) ) |
| 110 | 102 109 | eqbrtrrd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) <_ ( O ` A ) ) |
| 111 | 84 | nnred | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) e. RR ) |
| 112 | 23 | nnred | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( O ` A ) e. RR ) |
| 113 | 36 | nnrpd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ ) |
| 114 | 111 112 113 | lemuldivd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) x. ( p ^ ( p pCnt ( O ` x ) ) ) ) <_ ( O ` A ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
| 115 | 110 114 | mpbid | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
| 116 | nnrp | |- ( ( p ^ ( p pCnt ( O ` x ) ) ) e. NN -> ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ ) |
|
| 117 | nnrp | |- ( ( p ^ ( p pCnt ( O ` A ) ) ) e. NN -> ( p ^ ( p pCnt ( O ` A ) ) ) e. RR+ ) |
|
| 118 | nnrp | |- ( ( O ` A ) e. NN -> ( O ` A ) e. RR+ ) |
|
| 119 | rpregt0 | |- ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ -> ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` x ) ) ) ) ) |
|
| 120 | rpregt0 | |- ( ( p ^ ( p pCnt ( O ` A ) ) ) e. RR+ -> ( ( p ^ ( p pCnt ( O ` A ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
|
| 121 | rpregt0 | |- ( ( O ` A ) e. RR+ -> ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) |
|
| 122 | lediv2 | |- ( ( ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` x ) ) ) ) /\ ( ( p ^ ( p pCnt ( O ` A ) ) ) e. RR /\ 0 < ( p ^ ( p pCnt ( O ` A ) ) ) ) /\ ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
|
| 123 | 119 120 121 122 | syl3an | |- ( ( ( p ^ ( p pCnt ( O ` x ) ) ) e. RR+ /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. RR+ /\ ( O ` A ) e. RR+ ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
| 124 | 116 117 118 123 | syl3an | |- ( ( ( p ^ ( p pCnt ( O ` x ) ) ) e. NN /\ ( p ^ ( p pCnt ( O ` A ) ) ) e. NN /\ ( O ` A ) e. NN ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
| 125 | 36 25 23 124 | syl3anc | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) <-> ( ( O ` A ) / ( p ^ ( p pCnt ( O ` A ) ) ) ) <_ ( ( O ` A ) / ( p ^ ( p pCnt ( O ` x ) ) ) ) ) ) |
| 126 | 115 125 | mpbird | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) ) |
| 127 | 18 | nnred | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. RR ) |
| 128 | 35 | nn0zd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` x ) ) e. ZZ ) |
| 129 | 24 | nn0zd | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` A ) ) e. ZZ ) |
| 130 | prmuz2 | |- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
|
| 131 | 130 | adantl | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> p e. ( ZZ>= ` 2 ) ) |
| 132 | eluz2gt1 | |- ( p e. ( ZZ>= ` 2 ) -> 1 < p ) |
|
| 133 | 131 132 | syl | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> 1 < p ) |
| 134 | 127 128 129 133 | leexp2d | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) <-> ( p ^ ( p pCnt ( O ` x ) ) ) <_ ( p ^ ( p pCnt ( O ` A ) ) ) ) ) |
| 135 | 126 134 | mpbird | |- ( ( ( ph /\ x e. X ) /\ p e. Prime ) -> ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) |
| 136 | 135 | ralrimiva | |- ( ( ph /\ x e. X ) -> A. p e. Prime ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) |
| 137 | 1 3 | odcl | |- ( x e. X -> ( O ` x ) e. NN0 ) |
| 138 | 137 | adantl | |- ( ( ph /\ x e. X ) -> ( O ` x ) e. NN0 ) |
| 139 | 138 | nn0zd | |- ( ( ph /\ x e. X ) -> ( O ` x ) e. ZZ ) |
| 140 | 9 | nn0zd | |- ( ph -> ( O ` A ) e. ZZ ) |
| 141 | 140 | adantr | |- ( ( ph /\ x e. X ) -> ( O ` A ) e. ZZ ) |
| 142 | pc2dvds | |- ( ( ( O ` x ) e. ZZ /\ ( O ` A ) e. ZZ ) -> ( ( O ` x ) || ( O ` A ) <-> A. p e. Prime ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) ) |
|
| 143 | 139 141 142 | syl2anc | |- ( ( ph /\ x e. X ) -> ( ( O ` x ) || ( O ` A ) <-> A. p e. Prime ( p pCnt ( O ` x ) ) <_ ( p pCnt ( O ` A ) ) ) ) |
| 144 | 136 143 | mpbird | |- ( ( ph /\ x e. X ) -> ( O ` x ) || ( O ` A ) ) |
| 145 | 144 | ralrimiva | |- ( ph -> A. x e. X ( O ` x ) || ( O ` A ) ) |
| 146 | 1 2 3 | gexdvds2 | |- ( ( G e. Grp /\ ( O ` A ) e. ZZ ) -> ( E || ( O ` A ) <-> A. x e. X ( O ` x ) || ( O ` A ) ) ) |
| 147 | 12 140 146 | syl2anc | |- ( ph -> ( E || ( O ` A ) <-> A. x e. X ( O ` x ) || ( O ` A ) ) ) |
| 148 | 145 147 | mpbird | |- ( ph -> E || ( O ` A ) ) |
| 149 | dvdseq | |- ( ( ( ( O ` A ) e. NN0 /\ E e. NN0 ) /\ ( ( O ` A ) || E /\ E || ( O ` A ) ) ) -> ( O ` A ) = E ) |
|
| 150 | 9 10 14 148 149 | syl22anc | |- ( ph -> ( O ` A ) = E ) |