This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every group element has finite order if the exponent is finite. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexod.1 | |- X = ( Base ` G ) |
|
| gexod.2 | |- E = ( gEx ` G ) |
||
| gexod.3 | |- O = ( od ` G ) |
||
| Assertion | gexnnod | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexod.1 | |- X = ( Base ` G ) |
|
| 2 | gexod.2 | |- E = ( gEx ` G ) |
|
| 3 | gexod.3 | |- O = ( od ` G ) |
|
| 4 | nnne0 | |- ( E e. NN -> E =/= 0 ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> E =/= 0 ) |
| 6 | nnz | |- ( E e. NN -> E e. ZZ ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> E e. ZZ ) |
| 8 | 0dvds | |- ( E e. ZZ -> ( 0 || E <-> E = 0 ) ) |
|
| 9 | 7 8 | syl | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( 0 || E <-> E = 0 ) ) |
| 10 | 9 | necon3bbid | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( -. 0 || E <-> E =/= 0 ) ) |
| 11 | 5 10 | mpbird | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> -. 0 || E ) |
| 12 | 1 2 3 | gexod | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |
| 13 | 12 | 3adant2 | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) || E ) |
| 14 | breq1 | |- ( ( O ` A ) = 0 -> ( ( O ` A ) || E <-> 0 || E ) ) |
|
| 15 | 13 14 | syl5ibcom | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( ( O ` A ) = 0 -> 0 || E ) ) |
| 16 | 11 15 | mtod | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> -. ( O ` A ) = 0 ) |
| 17 | 1 3 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 18 | 17 | 3ad2ant3 | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN0 ) |
| 19 | elnn0 | |- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
|
| 20 | 18 19 | sylib | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
| 21 | 20 | ord | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( -. ( O ` A ) e. NN -> ( O ` A ) = 0 ) ) |
| 22 | 16 21 | mt3d | |- ( ( G e. Grp /\ E e. NN /\ A e. X ) -> ( O ` A ) e. NN ) |