This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexp1i | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
|
| 2 | rpexp | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( ( A ^ M ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
|
| 3 | 2 | biimprd | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 4 | 3 | 3expa | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 5 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> M = 0 ) |
|
| 6 | 5 | oveq2d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ M ) = ( A ^ 0 ) ) |
| 7 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> A e. CC ) |
| 9 | 8 | exp0d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ 0 ) = 1 ) |
| 10 | 6 9 | eqtrd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( A ^ M ) = 1 ) |
| 11 | 10 | oveq1d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A ^ M ) gcd B ) = ( 1 gcd B ) ) |
| 12 | 1gcd | |- ( B e. ZZ -> ( 1 gcd B ) = 1 ) |
|
| 13 | 12 | ad2antlr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( 1 gcd B ) = 1 ) |
| 14 | 11 13 | eqtrd | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A ^ M ) gcd B ) = 1 ) |
| 15 | 14 | a1d | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M = 0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 16 | 4 15 | jaodan | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( M e. NN \/ M = 0 ) ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 17 | 1 16 | sylan2b | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |
| 18 | 17 | 3impa | |- ( ( A e. ZZ /\ B e. ZZ /\ M e. NN0 ) -> ( ( A gcd B ) = 1 -> ( ( A ^ M ) gcd B ) = 1 ) ) |