This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odadd1.1 | |- O = ( od ` G ) |
|
| odadd1.2 | |- X = ( Base ` G ) |
||
| odadd1.3 | |- .+ = ( +g ` G ) |
||
| Assertion | odadd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odadd1.1 | |- O = ( od ` G ) |
|
| 2 | odadd1.2 | |- X = ( Base ` G ) |
|
| 3 | odadd1.3 | |- .+ = ( +g ` G ) |
|
| 4 | simpl1 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Abel ) |
|
| 5 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 6 | 4 5 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> G e. Grp ) |
| 7 | simpl2 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> A e. X ) |
|
| 8 | simpl3 | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> B e. X ) |
|
| 9 | 2 3 | grpcl | |- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( A .+ B ) e. X ) |
| 11 | 2 1 | odcl | |- ( ( A .+ B ) e. X -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 12 | 10 11 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. NN0 ) |
| 13 | 2 1 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 14 | 7 13 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` A ) e. NN0 ) |
| 15 | 2 1 | odcl | |- ( B e. X -> ( O ` B ) e. NN0 ) |
| 16 | 8 15 | syl | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` B ) e. NN0 ) |
| 17 | 14 16 | nn0mulcld | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) |
| 18 | simpr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) gcd ( O ` B ) ) = 1 ) |
|
| 19 | 18 | oveq2d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) |
| 20 | 12 | nn0cnd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) e. CC ) |
| 21 | 20 | mulridd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. 1 ) = ( O ` ( A .+ B ) ) ) |
| 22 | 19 21 | eqtrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) = ( O ` ( A .+ B ) ) ) |
| 23 | 1 2 3 | odadd1 | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 24 | 23 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( O ` A ) gcd ( O ` B ) ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 25 | 22 24 | eqbrtrrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) ) |
| 26 | 1 2 3 | odadd2 | |- ( ( G e. Abel /\ A e. X /\ B e. X ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 27 | 26 | adantr | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) ) |
| 28 | 18 | oveq1d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 29 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 30 | 28 29 | eqtrdi | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) = 1 ) |
| 31 | 30 | oveq2d | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( ( O ` ( A .+ B ) ) x. 1 ) ) |
| 32 | 31 21 | eqtrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` ( A .+ B ) ) x. ( ( ( O ` A ) gcd ( O ` B ) ) ^ 2 ) ) = ( O ` ( A .+ B ) ) ) |
| 33 | 27 32 | breqtrd | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) |
| 34 | dvdseq | |- ( ( ( ( O ` ( A .+ B ) ) e. NN0 /\ ( ( O ` A ) x. ( O ` B ) ) e. NN0 ) /\ ( ( O ` ( A .+ B ) ) || ( ( O ` A ) x. ( O ` B ) ) /\ ( ( O ` A ) x. ( O ` B ) ) || ( O ` ( A .+ B ) ) ) ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |
|
| 35 | 12 17 25 33 34 | syl22anc | |- ( ( ( G e. Abel /\ A e. X /\ B e. X ) /\ ( ( O ` A ) gcd ( O ` B ) ) = 1 ) -> ( O ` ( A .+ B ) ) = ( ( O ` A ) x. ( O ` B ) ) ) |