This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexod.1 | |- X = ( Base ` G ) |
|
| gexod.2 | |- E = ( gEx ` G ) |
||
| gexod.3 | |- O = ( od ` G ) |
||
| Assertion | gexod | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexod.1 | |- X = ( Base ` G ) |
|
| 2 | gexod.2 | |- E = ( gEx ` G ) |
|
| 3 | gexod.3 | |- O = ( od ` G ) |
|
| 4 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 1 2 4 5 | gexid | |- ( A e. X -> ( E ( .g ` G ) A ) = ( 0g ` G ) ) |
| 7 | 6 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( E ( .g ` G ) A ) = ( 0g ` G ) ) |
| 8 | 1 2 | gexcl | |- ( G e. Grp -> E e. NN0 ) |
| 9 | 8 | adantr | |- ( ( G e. Grp /\ A e. X ) -> E e. NN0 ) |
| 10 | 9 | nn0zd | |- ( ( G e. Grp /\ A e. X ) -> E e. ZZ ) |
| 11 | 1 3 4 5 | oddvds | |- ( ( G e. Grp /\ A e. X /\ E e. ZZ ) -> ( ( O ` A ) || E <-> ( E ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 12 | 10 11 | mpd3an3 | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) || E <-> ( E ( .g ` G ) A ) = ( 0g ` G ) ) ) |
| 13 | 7 12 | mpbird | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E ) |