This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if E = 0 , for example in an infinite p-group, where there are elements of arbitrarily large orders (so E is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexex.1 | |- X = ( Base ` G ) |
|
| gexex.2 | |- E = ( gEx ` G ) |
||
| gexex.3 | |- O = ( od ` G ) |
||
| Assertion | gexex | |- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexex.1 | |- X = ( Base ` G ) |
|
| 2 | gexex.2 | |- E = ( gEx ` G ) |
|
| 3 | gexex.3 | |- O = ( od ` G ) |
|
| 4 | simpll | |- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> G e. Abel ) |
|
| 5 | simplr | |- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> E e. NN ) |
|
| 6 | simprl | |- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> x e. X ) |
|
| 7 | 1 3 | odf | |- O : X --> NN0 |
| 8 | frn | |- ( O : X --> NN0 -> ran O C_ NN0 ) |
|
| 9 | 7 8 | ax-mp | |- ran O C_ NN0 |
| 10 | nn0ssz | |- NN0 C_ ZZ |
|
| 11 | 9 10 | sstri | |- ran O C_ ZZ |
| 12 | nnz | |- ( E e. NN -> E e. ZZ ) |
|
| 13 | 12 | adantl | |- ( ( G e. Abel /\ E e. NN ) -> E e. ZZ ) |
| 14 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 15 | 14 | adantr | |- ( ( G e. Abel /\ E e. NN ) -> G e. Grp ) |
| 16 | 1 2 3 | gexod | |- ( ( G e. Grp /\ x e. X ) -> ( O ` x ) || E ) |
| 17 | 15 16 | sylan | |- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) || E ) |
| 18 | 1 3 | odcl | |- ( x e. X -> ( O ` x ) e. NN0 ) |
| 19 | 18 | adantl | |- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) e. NN0 ) |
| 20 | 19 | nn0zd | |- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) e. ZZ ) |
| 21 | simplr | |- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> E e. NN ) |
|
| 22 | dvdsle | |- ( ( ( O ` x ) e. ZZ /\ E e. NN ) -> ( ( O ` x ) || E -> ( O ` x ) <_ E ) ) |
|
| 23 | 20 21 22 | syl2anc | |- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( ( O ` x ) || E -> ( O ` x ) <_ E ) ) |
| 24 | 17 23 | mpd | |- ( ( ( G e. Abel /\ E e. NN ) /\ x e. X ) -> ( O ` x ) <_ E ) |
| 25 | 24 | ralrimiva | |- ( ( G e. Abel /\ E e. NN ) -> A. x e. X ( O ` x ) <_ E ) |
| 26 | ffn | |- ( O : X --> NN0 -> O Fn X ) |
|
| 27 | 7 26 | ax-mp | |- O Fn X |
| 28 | breq1 | |- ( y = ( O ` x ) -> ( y <_ E <-> ( O ` x ) <_ E ) ) |
|
| 29 | 28 | ralrn | |- ( O Fn X -> ( A. y e. ran O y <_ E <-> A. x e. X ( O ` x ) <_ E ) ) |
| 30 | 27 29 | ax-mp | |- ( A. y e. ran O y <_ E <-> A. x e. X ( O ` x ) <_ E ) |
| 31 | 25 30 | sylibr | |- ( ( G e. Abel /\ E e. NN ) -> A. y e. ran O y <_ E ) |
| 32 | brralrspcev | |- ( ( E e. ZZ /\ A. y e. ran O y <_ E ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
|
| 33 | 13 31 32 | syl2anc | |- ( ( G e. Abel /\ E e. NN ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
| 34 | 33 | ad2antrr | |- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> E. n e. ZZ A. y e. ran O y <_ n ) |
| 35 | 27 | a1i | |- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> O Fn X ) |
| 36 | fnfvelrn | |- ( ( O Fn X /\ y e. X ) -> ( O ` y ) e. ran O ) |
|
| 37 | 35 36 | sylan | |- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) e. ran O ) |
| 38 | suprzub | |- ( ( ran O C_ ZZ /\ E. n e. ZZ A. y e. ran O y <_ n /\ ( O ` y ) e. ran O ) -> ( O ` y ) <_ sup ( ran O , RR , < ) ) |
|
| 39 | 11 34 37 38 | mp3an2i | |- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) <_ sup ( ran O , RR , < ) ) |
| 40 | simplrr | |- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` x ) = sup ( ran O , RR , < ) ) |
|
| 41 | 39 40 | breqtrrd | |- ( ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) /\ y e. X ) -> ( O ` y ) <_ ( O ` x ) ) |
| 42 | 1 2 3 4 5 6 41 | gexexlem | |- ( ( ( G e. Abel /\ E e. NN ) /\ ( x e. X /\ ( O ` x ) = sup ( ran O , RR , < ) ) ) -> ( O ` x ) = E ) |
| 43 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 44 | 15 43 | syl | |- ( ( G e. Abel /\ E e. NN ) -> X =/= (/) ) |
| 45 | 7 | fdmi | |- dom O = X |
| 46 | 45 | eqeq1i | |- ( dom O = (/) <-> X = (/) ) |
| 47 | dm0rn0 | |- ( dom O = (/) <-> ran O = (/) ) |
|
| 48 | 46 47 | bitr3i | |- ( X = (/) <-> ran O = (/) ) |
| 49 | 48 | necon3bii | |- ( X =/= (/) <-> ran O =/= (/) ) |
| 50 | 44 49 | sylib | |- ( ( G e. Abel /\ E e. NN ) -> ran O =/= (/) ) |
| 51 | suprzcl2 | |- ( ( ran O C_ ZZ /\ ran O =/= (/) /\ E. n e. ZZ A. y e. ran O y <_ n ) -> sup ( ran O , RR , < ) e. ran O ) |
|
| 52 | 11 50 33 51 | mp3an2i | |- ( ( G e. Abel /\ E e. NN ) -> sup ( ran O , RR , < ) e. ran O ) |
| 53 | fvelrnb | |- ( O Fn X -> ( sup ( ran O , RR , < ) e. ran O <-> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) ) |
|
| 54 | 27 53 | ax-mp | |- ( sup ( ran O , RR , < ) e. ran O <-> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) |
| 55 | 52 54 | sylib | |- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = sup ( ran O , RR , < ) ) |
| 56 | 42 55 | reximddv | |- ( ( G e. Abel /\ E e. NN ) -> E. x e. X ( O ` x ) = E ) |