This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in ApostolNT p. 17. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprm | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 2 | gcddvds | |- ( ( P e. ZZ /\ N e. ZZ ) -> ( ( P gcd N ) || P /\ ( P gcd N ) || N ) ) |
|
| 3 | 1 2 | sylan | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) || P /\ ( P gcd N ) || N ) ) |
| 4 | 3 | simprd | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) || N ) |
| 5 | breq1 | |- ( ( P gcd N ) = P -> ( ( P gcd N ) || N <-> P || N ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) = P -> P || N ) ) |
| 7 | 6 | con3d | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N -> -. ( P gcd N ) = P ) ) |
| 8 | 0nnn | |- -. 0 e. NN |
|
| 9 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 10 | eleq1 | |- ( P = 0 -> ( P e. NN <-> 0 e. NN ) ) |
|
| 11 | 9 10 | syl5ibcom | |- ( P e. Prime -> ( P = 0 -> 0 e. NN ) ) |
| 12 | 8 11 | mtoi | |- ( P e. Prime -> -. P = 0 ) |
| 13 | 12 | intnanrd | |- ( P e. Prime -> -. ( P = 0 /\ N = 0 ) ) |
| 14 | 13 | adantr | |- ( ( P e. Prime /\ N e. ZZ ) -> -. ( P = 0 /\ N = 0 ) ) |
| 15 | gcdn0cl | |- ( ( ( P e. ZZ /\ N e. ZZ ) /\ -. ( P = 0 /\ N = 0 ) ) -> ( P gcd N ) e. NN ) |
|
| 16 | 15 | ex | |- ( ( P e. ZZ /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( P gcd N ) e. NN ) ) |
| 17 | 1 16 | sylan | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( P gcd N ) e. NN ) ) |
| 18 | 14 17 | mpd | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) e. NN ) |
| 19 | 3 | simpld | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) || P ) |
| 20 | isprm2 | |- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
|
| 21 | 20 | simprbi | |- ( P e. Prime -> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 22 | breq1 | |- ( z = ( P gcd N ) -> ( z || P <-> ( P gcd N ) || P ) ) |
|
| 23 | eqeq1 | |- ( z = ( P gcd N ) -> ( z = 1 <-> ( P gcd N ) = 1 ) ) |
|
| 24 | eqeq1 | |- ( z = ( P gcd N ) -> ( z = P <-> ( P gcd N ) = P ) ) |
|
| 25 | 23 24 | orbi12d | |- ( z = ( P gcd N ) -> ( ( z = 1 \/ z = P ) <-> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) |
| 26 | 22 25 | imbi12d | |- ( z = ( P gcd N ) -> ( ( z || P -> ( z = 1 \/ z = P ) ) <-> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
| 27 | 26 | rspcv | |- ( ( P gcd N ) e. NN -> ( A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) -> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
| 28 | 21 27 | syl5com | |- ( P e. Prime -> ( ( P gcd N ) e. NN -> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
| 29 | 28 | adantr | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) e. NN -> ( ( P gcd N ) || P -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) ) |
| 30 | 18 19 29 | mp2d | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) |
| 31 | biorf | |- ( -. ( P gcd N ) = P -> ( ( P gcd N ) = 1 <-> ( ( P gcd N ) = P \/ ( P gcd N ) = 1 ) ) ) |
|
| 32 | orcom | |- ( ( ( P gcd N ) = P \/ ( P gcd N ) = 1 ) <-> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) |
|
| 33 | 31 32 | bitrdi | |- ( -. ( P gcd N ) = P -> ( ( P gcd N ) = 1 <-> ( ( P gcd N ) = 1 \/ ( P gcd N ) = P ) ) ) |
| 34 | 30 33 | syl5ibrcom | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. ( P gcd N ) = P -> ( P gcd N ) = 1 ) ) |
| 35 | 7 34 | syld | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N -> ( P gcd N ) = 1 ) ) |
| 36 | iddvds | |- ( P e. ZZ -> P || P ) |
|
| 37 | 1 36 | syl | |- ( P e. Prime -> P || P ) |
| 38 | 37 | adantr | |- ( ( P e. Prime /\ N e. ZZ ) -> P || P ) |
| 39 | dvdslegcd | |- ( ( ( P e. ZZ /\ P e. ZZ /\ N e. ZZ ) /\ -. ( P = 0 /\ N = 0 ) ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) |
|
| 40 | 39 | ex | |- ( ( P e. ZZ /\ P e. ZZ /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) ) |
| 41 | 40 | 3anidm12 | |- ( ( P e. ZZ /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) ) |
| 42 | 1 41 | sylan | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. ( P = 0 /\ N = 0 ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) ) |
| 43 | 14 42 | mpd | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P || P /\ P || N ) -> P <_ ( P gcd N ) ) ) |
| 44 | 38 43 | mpand | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P || N -> P <_ ( P gcd N ) ) ) |
| 45 | prmgt1 | |- ( P e. Prime -> 1 < P ) |
|
| 46 | 45 | adantr | |- ( ( P e. Prime /\ N e. ZZ ) -> 1 < P ) |
| 47 | 1re | |- 1 e. RR |
|
| 48 | 1 | zred | |- ( P e. Prime -> P e. RR ) |
| 49 | 18 | nnred | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P gcd N ) e. RR ) |
| 50 | ltletr | |- ( ( 1 e. RR /\ P e. RR /\ ( P gcd N ) e. RR ) -> ( ( 1 < P /\ P <_ ( P gcd N ) ) -> 1 < ( P gcd N ) ) ) |
|
| 51 | 47 48 49 50 | mp3an2ani | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( 1 < P /\ P <_ ( P gcd N ) ) -> 1 < ( P gcd N ) ) ) |
| 52 | 46 51 | mpand | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P <_ ( P gcd N ) -> 1 < ( P gcd N ) ) ) |
| 53 | ltne | |- ( ( 1 e. RR /\ 1 < ( P gcd N ) ) -> ( P gcd N ) =/= 1 ) |
|
| 54 | 47 53 | mpan | |- ( 1 < ( P gcd N ) -> ( P gcd N ) =/= 1 ) |
| 55 | 54 | a1i | |- ( ( P e. Prime /\ N e. ZZ ) -> ( 1 < ( P gcd N ) -> ( P gcd N ) =/= 1 ) ) |
| 56 | 44 52 55 | 3syld | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P || N -> ( P gcd N ) =/= 1 ) ) |
| 57 | 56 | necon2bd | |- ( ( P e. Prime /\ N e. ZZ ) -> ( ( P gcd N ) = 1 -> -. P || N ) ) |
| 58 | 35 57 | impbid | |- ( ( P e. Prime /\ N e. ZZ ) -> ( -. P || N <-> ( P gcd N ) = 1 ) ) |