This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gexex . (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexex.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexex.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexex.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| gexexlem.1 | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| gexexlem.2 | ⊢ ( 𝜑 → 𝐸 ∈ ℕ ) | ||
| gexexlem.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| gexexlem.4 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝐴 ) ) | ||
| Assertion | gexexlem | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexex.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexex.2 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | gexex.3 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | gexexlem.1 | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 5 | gexexlem.2 | ⊢ ( 𝜑 → 𝐸 ∈ ℕ ) | |
| 6 | gexexlem.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 7 | gexexlem.4 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝐴 ) ) | |
| 8 | 1 3 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 10 | 5 | nnnn0d | ⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
| 11 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 13 | 1 2 3 | gexod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| 14 | 12 6 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| 15 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝐺 ∈ Abel ) |
| 16 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝐺 ∈ Grp ) |
| 17 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
| 19 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 20 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝐸 ∈ ℕ ) |
| 21 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ 𝑋 ) |
| 22 | 1 2 3 | gexnnod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 23 | 16 20 21 22 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 24 | 19 23 | pccld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 25 | 18 24 | nnexpcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ ) |
| 26 | 25 | nnzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ) |
| 27 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 28 | 1 27 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) |
| 29 | 16 26 21 28 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) |
| 30 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝑥 ∈ 𝑋 ) | |
| 31 | 1 2 3 | gexnnod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) |
| 32 | 16 20 30 31 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) |
| 33 | pcdvds | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ) | |
| 34 | 19 32 33 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ) |
| 35 | 19 32 | pccld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ∈ ℕ0 ) |
| 36 | 18 35 | nnexpcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℕ ) |
| 37 | nndivdvds | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ℕ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℕ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ↔ ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℕ ) ) | |
| 38 | 32 36 37 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ↔ ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℕ ) ) |
| 39 | 34 38 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℕ ) |
| 40 | 39 | nnzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℤ ) |
| 41 | 1 27 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℤ ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
| 42 | 16 40 30 41 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
| 43 | 1 3 27 | odmulg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) = ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 44 | 16 21 26 43 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝐴 ) = ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 45 | pcdvds | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) | |
| 46 | 19 23 45 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 47 | gcdeq | ⊢ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) gcd ( 𝑂 ‘ 𝐴 ) ) = ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 48 | 25 23 47 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) gcd ( 𝑂 ‘ 𝐴 ) ) = ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
| 49 | 46 48 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) gcd ( 𝑂 ‘ 𝐴 ) ) = ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 50 | 49 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) = ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 51 | 44 50 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) ) |
| 52 | 51 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) = ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) |
| 53 | 1 2 3 | gexnnod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ) → ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ℕ ) |
| 54 | 16 20 29 53 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ℕ ) |
| 55 | 54 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ∈ ℂ ) |
| 56 | 25 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 57 | 25 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ≠ 0 ) |
| 58 | 55 56 57 | divcan3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) · ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) = ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) ) |
| 59 | 52 58 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) |
| 60 | 1 2 3 | gexnnod | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) → ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ∈ ℕ ) |
| 61 | 16 20 42 60 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ∈ ℕ ) |
| 62 | 61 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ∈ ℂ ) |
| 63 | 36 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 64 | 39 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 65 | 39 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ≠ 0 ) |
| 66 | 32 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝑥 ) ∈ ℂ ) |
| 67 | 36 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≠ 0 ) |
| 68 | 66 63 67 | divcan1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) = ( 𝑂 ‘ 𝑥 ) ) |
| 69 | 1 3 27 | odmulg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℤ ) → ( 𝑂 ‘ 𝑥 ) = ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) gcd ( 𝑂 ‘ 𝑥 ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 70 | 16 30 40 69 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝑥 ) = ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) gcd ( 𝑂 ‘ 𝑥 ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 71 | 36 | nnzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℤ ) |
| 72 | dvdsmul1 | ⊢ ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℤ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∥ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) | |
| 73 | 40 71 72 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∥ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 74 | 73 68 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ) |
| 75 | gcdeq | ⊢ ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∈ ℕ ∧ ( 𝑂 ‘ 𝑥 ) ∈ ℕ ) → ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) gcd ( 𝑂 ‘ 𝑥 ) ) = ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ) ) | |
| 76 | 39 32 75 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) gcd ( 𝑂 ‘ 𝑥 ) ) = ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∥ ( 𝑂 ‘ 𝑥 ) ) ) |
| 77 | 74 76 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) gcd ( 𝑂 ‘ 𝑥 ) ) = ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 78 | 77 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) gcd ( 𝑂 ‘ 𝑥 ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 79 | 68 70 78 | 3eqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 80 | 62 63 64 65 79 | mulcanad | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) |
| 81 | 59 80 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) gcd ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 82 | nndivdvds | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℕ ) ) | |
| 83 | 23 25 82 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℕ ) ) |
| 84 | 46 83 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℕ ) |
| 85 | 84 | nnzd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℤ ) |
| 86 | 85 71 | gcdcomd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) gcd ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) = ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) ) |
| 87 | pcndvds2 | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ¬ 𝑝 ∥ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) | |
| 88 | 19 23 87 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) |
| 89 | coprm | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℤ ) → ( ¬ 𝑝 ∥ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ↔ ( 𝑝 gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 ) ) | |
| 90 | 19 85 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ¬ 𝑝 ∥ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ↔ ( 𝑝 gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 ) ) |
| 91 | 88 90 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 ) |
| 92 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 93 | 92 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 94 | rpexp1i | ⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℤ ∧ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ∈ ℕ0 ) → ( ( 𝑝 gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 ) ) | |
| 95 | 93 85 35 94 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 ) ) |
| 96 | 91 95 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) gcd ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) = 1 ) |
| 97 | 81 86 96 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) gcd ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = 1 ) |
| 98 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 99 | 3 1 98 | odadd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) ∧ ( ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) gcd ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = 1 ) → ( 𝑂 ‘ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 100 | 15 29 42 97 99 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 101 | 59 80 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ) · ( 𝑂 ‘ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 102 | 100 101 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) = ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 103 | fveq2 | ⊢ ( 𝑦 = ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) | |
| 104 | 103 | breq1d | ⊢ ( 𝑦 = ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) → ( ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ≤ ( 𝑂 ‘ 𝐴 ) ) ) |
| 105 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝐴 ) ) |
| 106 | 105 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ∀ 𝑦 ∈ 𝑋 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝐴 ) ) |
| 107 | 1 98 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ∈ 𝑋 ∧ ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ∈ 𝑋 ) |
| 108 | 16 29 42 107 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ∈ 𝑋 ) |
| 109 | 104 106 108 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ( .g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝑥 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ( .g ‘ 𝐺 ) 𝑥 ) ) ) ≤ ( 𝑂 ‘ 𝐴 ) ) |
| 110 | 102 109 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ≤ ( 𝑂 ‘ 𝐴 ) ) |
| 111 | 84 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 112 | 23 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ ) |
| 113 | 36 | nnrpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℝ+ ) |
| 114 | 111 112 113 | lemuldivd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) · ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ≤ ( 𝑂 ‘ 𝐴 ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) ) |
| 115 | 110 114 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) |
| 116 | nnrp | ⊢ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℕ → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℝ+ ) | |
| 117 | nnrp | ⊢ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℝ+ ) | |
| 118 | nnrp | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) | |
| 119 | rpregt0 | ⊢ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℝ+ → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 < ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) | |
| 120 | rpregt0 | ⊢ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℝ+ → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 < ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) | |
| 121 | rpregt0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ → ( ( 𝑂 ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( 𝑂 ‘ 𝐴 ) ) ) | |
| 122 | lediv2 | ⊢ ( ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 < ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ∧ ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 < ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ∧ ( ( 𝑂 ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( 𝑂 ‘ 𝐴 ) ) ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≤ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) ) | |
| 123 | 119 120 121 122 | syl3an | ⊢ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℝ+ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℝ+ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≤ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) ) |
| 124 | 116 117 118 123 | syl3an | ⊢ ( ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ∈ ℕ ∧ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ∈ ℕ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≤ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) ) |
| 125 | 36 25 23 124 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≤ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝐴 ) / ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ) ) ) |
| 126 | 115 125 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≤ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 127 | 18 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℝ ) |
| 128 | 35 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ∈ ℤ ) |
| 129 | 24 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ∈ ℤ ) |
| 130 | prmuz2 | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 131 | 130 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 132 | eluz2gt1 | ⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) | |
| 133 | 131 132 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → 1 < 𝑝 ) |
| 134 | 127 128 129 133 | leexp2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ≤ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ↔ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ) ≤ ( 𝑝 ↑ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) ) |
| 135 | 126 134 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ≤ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) |
| 136 | 135 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ≤ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) |
| 137 | 1 3 | odcl | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 138 | 137 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
| 139 | 138 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℤ ) |
| 140 | 9 | nn0zd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 141 | 140 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 142 | pc2dvds | ⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ≤ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) | |
| 143 | 139 141 142 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝑂 ‘ 𝑥 ) ) ≤ ( 𝑝 pCnt ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 144 | 136 143 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 145 | 144 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 146 | 1 2 3 | gexdvds2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( 𝐸 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
| 147 | 12 140 146 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
| 148 | 145 147 | mpbird | ⊢ ( 𝜑 → 𝐸 ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 149 | dvdseq | ⊢ ( ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ∧ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ∧ 𝐸 ∥ ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) | |
| 150 | 9 10 14 148 149 | syl22anc | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) = 𝐸 ) |