This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between the order of an element and that of a multiple. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | |- X = ( Base ` G ) |
|
| odmulgid.2 | |- O = ( od ` G ) |
||
| odmulgid.3 | |- .x. = ( .g ` G ) |
||
| Assertion | odmulg | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | |- X = ( Base ` G ) |
|
| 2 | odmulgid.2 | |- O = ( od ` G ) |
|
| 3 | odmulgid.3 | |- .x. = ( .g ` G ) |
|
| 4 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 5 | 4 | 3com23 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N .x. A ) e. X ) |
| 6 | 1 2 | odcl | |- ( ( N .x. A ) e. X -> ( O ` ( N .x. A ) ) e. NN0 ) |
| 7 | 5 6 | syl | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) e. NN0 ) |
| 8 | 7 | nn0cnd | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) e. CC ) |
| 9 | 8 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( O ` ( N .x. A ) ) e. CC ) |
| 10 | 9 | mul02d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( 0 x. ( O ` ( N .x. A ) ) ) = 0 ) |
| 11 | simpr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( N gcd ( O ` A ) ) = 0 ) |
|
| 12 | 11 | oveq1d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) = ( 0 x. ( O ` ( N .x. A ) ) ) ) |
| 13 | simp3 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) |
|
| 14 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 15 | 14 | 3ad2ant2 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. NN0 ) |
| 16 | 15 | nn0zd | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. ZZ ) |
| 17 | gcdeq0 | |- ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> ( ( N gcd ( O ` A ) ) = 0 <-> ( N = 0 /\ ( O ` A ) = 0 ) ) ) |
|
| 18 | 13 16 17 | syl2anc | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( N gcd ( O ` A ) ) = 0 <-> ( N = 0 /\ ( O ` A ) = 0 ) ) ) |
| 19 | 18 | simplbda | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( O ` A ) = 0 ) |
| 20 | 10 12 19 | 3eqtr4rd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |
| 21 | simpll3 | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> N e. ZZ ) |
|
| 22 | 16 | ad2antrr | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( O ` A ) e. ZZ ) |
| 23 | gcddvds | |- ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> ( ( N gcd ( O ` A ) ) || N /\ ( N gcd ( O ` A ) ) || ( O ` A ) ) ) |
|
| 24 | 21 22 23 | syl2anc | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( N gcd ( O ` A ) ) || N /\ ( N gcd ( O ` A ) ) || ( O ` A ) ) ) |
| 25 | 24 | simprd | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( N gcd ( O ` A ) ) || ( O ` A ) ) |
| 26 | 13 16 | gcdcld | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N gcd ( O ` A ) ) e. NN0 ) |
| 27 | 26 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( N gcd ( O ` A ) ) e. NN0 ) |
| 28 | 27 | nn0zd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( N gcd ( O ` A ) ) e. ZZ ) |
| 29 | 28 | adantr | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( N gcd ( O ` A ) ) e. ZZ ) |
| 30 | nn0z | |- ( x e. NN0 -> x e. ZZ ) |
|
| 31 | 30 | adantl | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> x e. ZZ ) |
| 32 | dvdstr | |- ( ( ( N gcd ( O ` A ) ) e. ZZ /\ ( O ` A ) e. ZZ /\ x e. ZZ ) -> ( ( ( N gcd ( O ` A ) ) || ( O ` A ) /\ ( O ` A ) || x ) -> ( N gcd ( O ` A ) ) || x ) ) |
|
| 33 | 29 22 31 32 | syl3anc | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( ( N gcd ( O ` A ) ) || ( O ` A ) /\ ( O ` A ) || x ) -> ( N gcd ( O ` A ) ) || x ) ) |
| 34 | 25 33 | mpand | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( O ` A ) || x -> ( N gcd ( O ` A ) ) || x ) ) |
| 35 | 7 | nn0zd | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) e. ZZ ) |
| 36 | 35 | ad2antrr | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( O ` ( N .x. A ) ) e. ZZ ) |
| 37 | muldvds1 | |- ( ( ( N gcd ( O ` A ) ) e. ZZ /\ ( O ` ( N .x. A ) ) e. ZZ /\ x e. ZZ ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x -> ( N gcd ( O ` A ) ) || x ) ) |
|
| 38 | 29 36 31 37 | syl3anc | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x -> ( N gcd ( O ` A ) ) || x ) ) |
| 39 | dvdszrcl | |- ( ( N gcd ( O ` A ) ) || x -> ( ( N gcd ( O ` A ) ) e. ZZ /\ x e. ZZ ) ) |
|
| 40 | divides | |- ( ( ( N gcd ( O ` A ) ) e. ZZ /\ x e. ZZ ) -> ( ( N gcd ( O ` A ) ) || x <-> E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x ) ) |
|
| 41 | 39 40 | syl | |- ( ( N gcd ( O ` A ) ) || x -> ( ( N gcd ( O ` A ) ) || x <-> E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x ) ) |
| 42 | 41 | ibi | |- ( ( N gcd ( O ` A ) ) || x -> E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x ) |
| 43 | 35 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( O ` ( N .x. A ) ) e. ZZ ) |
| 44 | simprr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 45 | 28 | adantrr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) e. ZZ ) |
| 46 | simprl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) =/= 0 ) |
|
| 47 | dvdscmulr | |- ( ( ( O ` ( N .x. A ) ) e. ZZ /\ y e. ZZ /\ ( ( N gcd ( O ` A ) ) e. ZZ /\ ( N gcd ( O ` A ) ) =/= 0 ) ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) <-> ( O ` ( N .x. A ) ) || y ) ) |
|
| 48 | 43 44 45 46 47 | syl112anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) <-> ( O ` ( N .x. A ) ) || y ) ) |
| 49 | 1 2 3 | odmulgid | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ y e. ZZ ) -> ( ( O ` ( N .x. A ) ) || y <-> ( O ` A ) || ( y x. N ) ) ) |
| 50 | 49 | adantrl | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` ( N .x. A ) ) || y <-> ( O ` A ) || ( y x. N ) ) ) |
| 51 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> N e. ZZ ) |
|
| 52 | dvdsmulgcd | |- ( ( y e. ZZ /\ N e. ZZ ) -> ( ( O ` A ) || ( y x. N ) <-> ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) |
|
| 53 | 44 51 52 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` A ) || ( y x. N ) <-> ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) |
| 54 | 48 50 53 | 3bitrrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) ) ) |
| 55 | 45 | zcnd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) e. CC ) |
| 56 | 44 | zcnd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> y e. CC ) |
| 57 | 55 56 | mulcomd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) x. y ) = ( y x. ( N gcd ( O ` A ) ) ) ) |
| 58 | 57 | breq2d | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) |
| 59 | 54 58 | bitrd | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) |
| 60 | 59 | anassrs | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ y e. ZZ ) -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) |
| 61 | breq2 | |- ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( O ` A ) || x ) ) |
|
| 62 | breq2 | |- ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) |
|
| 63 | 61 62 | bibi12d | |- ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) <-> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
| 64 | 60 63 | syl5ibcom | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ y e. ZZ ) -> ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
| 65 | 64 | rexlimdva | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
| 66 | 42 65 | syl5 | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( ( N gcd ( O ` A ) ) || x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
| 67 | 66 | adantr | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( N gcd ( O ` A ) ) || x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
| 68 | 34 38 67 | pm5.21ndd | |- ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) |
| 69 | 68 | ralrimiva | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> A. x e. NN0 ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) |
| 70 | 15 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( O ` A ) e. NN0 ) |
| 71 | 7 | adantr | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( O ` ( N .x. A ) ) e. NN0 ) |
| 72 | 27 71 | nn0mulcld | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) e. NN0 ) |
| 73 | dvdsext | |- ( ( ( O ` A ) e. NN0 /\ ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) e. NN0 ) -> ( ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) <-> A. x e. NN0 ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
|
| 74 | 70 72 73 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) <-> A. x e. NN0 ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) |
| 75 | 69 74 | mpbird | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |
| 76 | 20 75 | pm2.61dane | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |