This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdju1 | |- ( A e. V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | |- 1o e. On |
|
| 2 | pwdjuen | |- ( ( A e. V /\ 1o e. On ) -> ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) ) |
| 4 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 5 | 1oex | |- 1o e. _V |
|
| 6 | 5 | pwex | |- ~P 1o e. _V |
| 7 | xpcomeng | |- ( ( ~P A e. _V /\ ~P 1o e. _V ) -> ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) |
|
| 8 | 4 6 7 | sylancl | |- ( A e. V -> ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) |
| 9 | entr | |- ( ( ~P ( A |_| 1o ) ~~ ( ~P A X. ~P 1o ) /\ ( ~P A X. ~P 1o ) ~~ ( ~P 1o X. ~P A ) ) -> ~P ( A |_| 1o ) ~~ ( ~P 1o X. ~P A ) ) |
|
| 10 | 3 8 9 | syl2anc | |- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P 1o X. ~P A ) ) |
| 11 | pwpw0 | |- ~P { (/) } = { (/) , { (/) } } |
|
| 12 | df1o2 | |- 1o = { (/) } |
|
| 13 | 12 | pweqi | |- ~P 1o = ~P { (/) } |
| 14 | df2o2 | |- 2o = { (/) , { (/) } } |
|
| 15 | 11 13 14 | 3eqtr4i | |- ~P 1o = 2o |
| 16 | 15 | xpeq1i | |- ( ~P 1o X. ~P A ) = ( 2o X. ~P A ) |
| 17 | xp2dju | |- ( 2o X. ~P A ) = ( ~P A |_| ~P A ) |
|
| 18 | 16 17 | eqtri | |- ( ~P 1o X. ~P A ) = ( ~P A |_| ~P A ) |
| 19 | 10 18 | breqtrdi | |- ( A e. V -> ~P ( A |_| 1o ) ~~ ( ~P A |_| ~P A ) ) |
| 20 | 19 | ensymd | |- ( A e. V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |