This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchi | |- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex1i | |- ( B ~< ~P A -> B e. _V ) |
| 3 | 2 | adantl | |- ( ( A ~< B /\ B ~< ~P A ) -> B e. _V ) |
| 4 | breq2 | |- ( x = B -> ( A ~< x <-> A ~< B ) ) |
|
| 5 | breq1 | |- ( x = B -> ( x ~< ~P A <-> B ~< ~P A ) ) |
|
| 6 | 4 5 | anbi12d | |- ( x = B -> ( ( A ~< x /\ x ~< ~P A ) <-> ( A ~< B /\ B ~< ~P A ) ) ) |
| 7 | 6 | spcegv | |- ( B e. _V -> ( ( A ~< B /\ B ~< ~P A ) -> E. x ( A ~< x /\ x ~< ~P A ) ) ) |
| 8 | 3 7 | mpcom | |- ( ( A ~< B /\ B ~< ~P A ) -> E. x ( A ~< x /\ x ~< ~P A ) ) |
| 9 | df-ex | |- ( E. x ( A ~< x /\ x ~< ~P A ) <-> -. A. x -. ( A ~< x /\ x ~< ~P A ) ) |
|
| 10 | 8 9 | sylib | |- ( ( A ~< B /\ B ~< ~P A ) -> -. A. x -. ( A ~< x /\ x ~< ~P A ) ) |
| 11 | elgch | |- ( A e. GCH -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
|
| 12 | 11 | ibi | |- ( A e. GCH -> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) |
| 13 | 12 | orcomd | |- ( A e. GCH -> ( A. x -. ( A ~< x /\ x ~< ~P A ) \/ A e. Fin ) ) |
| 14 | 13 | ord | |- ( A e. GCH -> ( -. A. x -. ( A ~< x /\ x ~< ~P A ) -> A e. Fin ) ) |
| 15 | 10 14 | syl5 | |- ( A e. GCH -> ( ( A ~< B /\ B ~< ~P A ) -> A e. Fin ) ) |
| 16 | 15 | 3impib | |- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |