This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem reldom

Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion reldom
|- Rel ~<_

Proof

Step Hyp Ref Expression
1 df-dom
 |-  ~<_ = { <. x , y >. | E. f f : x -1-1-> y }
2 1 relopabiv
 |-  Rel ~<_