This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A <_ B <_ ~P A , and A is an infinite GCH-set, then either A = B or B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchor | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( A ~~ B \/ B ~~ ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> B ~<_ ~P A ) |
|
| 2 | brdom2 | |- ( B ~<_ ~P A <-> ( B ~< ~P A \/ B ~~ ~P A ) ) |
|
| 3 | 1 2 | sylib | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( B ~< ~P A \/ B ~~ ~P A ) ) |
| 4 | gchen1 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~~ B ) |
|
| 5 | 4 | expr | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ A ~<_ B ) -> ( B ~< ~P A -> A ~~ B ) ) |
| 6 | 5 | adantrr | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( B ~< ~P A -> A ~~ B ) ) |
| 7 | 6 | orim1d | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( ( B ~< ~P A \/ B ~~ ~P A ) -> ( A ~~ B \/ B ~~ ~P A ) ) ) |
| 8 | 3 7 | mpd | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( A ~~ B \/ B ~~ ~P A ) ) |