This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If ( alephA ) is a GCH-set and its powerset is well-orderable, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchaleph | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsucpw2 | |- -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) |
|
| 2 | alephon | |- ( aleph ` suc A ) e. On |
|
| 3 | onenon | |- ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) |
|
| 4 | 2 3 | ax-mp | |- ( aleph ` suc A ) e. dom card |
| 5 | simp3 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ~P ( aleph ` A ) e. dom card ) |
|
| 6 | domtri2 | |- ( ( ( aleph ` suc A ) e. dom card /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) |
|
| 7 | 4 5 6 | sylancr | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) |
| 8 | 1 7 | mpbiri | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) ) |
| 9 | fvex | |- ( aleph ` A ) e. _V |
|
| 10 | simp1 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> A e. On ) |
|
| 11 | alephgeom | |- ( A e. On <-> _om C_ ( aleph ` A ) ) |
|
| 12 | 10 11 | sylib | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> _om C_ ( aleph ` A ) ) |
| 13 | ssdomg | |- ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) |
|
| 14 | 9 12 13 | mpsyl | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> _om ~<_ ( aleph ` A ) ) |
| 15 | domnsym | |- ( _om ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< _om ) |
|
| 16 | 14 15 | syl | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` A ) ~< _om ) |
| 17 | isfinite | |- ( ( aleph ` A ) e. Fin <-> ( aleph ` A ) ~< _om ) |
|
| 18 | 16 17 | sylnibr | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` A ) e. Fin ) |
| 19 | simp2 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` A ) e. GCH ) |
|
| 20 | alephordilem1 | |- ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` A ) ~< ( aleph ` suc A ) ) |
| 22 | gchi | |- ( ( ( aleph ` A ) e. GCH /\ ( aleph ` A ) ~< ( aleph ` suc A ) /\ ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) -> ( aleph ` A ) e. Fin ) |
|
| 23 | 22 | 3expia | |- ( ( ( aleph ` A ) e. GCH /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( ( aleph ` suc A ) ~< ~P ( aleph ` A ) -> ( aleph ` A ) e. Fin ) ) |
| 24 | 19 21 23 | syl2anc | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~< ~P ( aleph ` A ) -> ( aleph ` A ) e. Fin ) ) |
| 25 | 18 24 | mtod | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) |
| 26 | domtri2 | |- ( ( ~P ( aleph ` A ) e. dom card /\ ( aleph ` suc A ) e. dom card ) -> ( ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) <-> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) ) |
|
| 27 | 5 4 26 | sylancl | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) <-> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) ) |
| 28 | 25 27 | mpbird | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) ) |
| 29 | sbth | |- ( ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |
|
| 30 | 8 28 29 | syl2anc | |- ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |