This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchdju1 | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | |- 1o e. _om |
|
| 2 | 1 | a1i | |- ( -. A e. Fin -> 1o e. _om ) |
| 3 | djudoml | |- ( ( A e. GCH /\ 1o e. _om ) -> A ~<_ ( A |_| 1o ) ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A |_| 1o ) ) |
| 5 | simpr | |- ( ( A e. GCH /\ -. A e. Fin ) -> -. A e. Fin ) |
|
| 6 | nnfi | |- ( 1o e. _om -> 1o e. Fin ) |
|
| 7 | 1 6 | mp1i | |- ( -. A e. Fin -> 1o e. Fin ) |
| 8 | fidomtri2 | |- ( ( A e. GCH /\ 1o e. Fin ) -> ( A ~<_ 1o <-> -. 1o ~< A ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ 1o <-> -. 1o ~< A ) ) |
| 10 | 1 6 | mp1i | |- ( ( A e. GCH /\ -. A e. Fin ) -> 1o e. Fin ) |
| 11 | domfi | |- ( ( 1o e. Fin /\ A ~<_ 1o ) -> A e. Fin ) |
|
| 12 | 11 | ex | |- ( 1o e. Fin -> ( A ~<_ 1o -> A e. Fin ) ) |
| 13 | 10 12 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ 1o -> A e. Fin ) ) |
| 14 | 9 13 | sylbird | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( -. 1o ~< A -> A e. Fin ) ) |
| 15 | 5 14 | mt3d | |- ( ( A e. GCH /\ -. A e. Fin ) -> 1o ~< A ) |
| 16 | canthp1 | |- ( 1o ~< A -> ( A |_| 1o ) ~< ~P A ) |
|
| 17 | 15 16 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~< ~P A ) |
| 18 | 4 17 | jca | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) ) |
| 19 | gchen1 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) ) -> A ~~ ( A |_| 1o ) ) |
|
| 20 | 18 19 | mpdan | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| 1o ) ) |
| 21 | 20 | ensymd | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |