This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Injection of sets implies injection on power sets. (Contributed by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdom | |- ( A ~<_ B -> ~P A ~<_ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | |- ( A = (/) -> ~P A = ~P (/) ) |
|
| 2 | 1 | breq1d | |- ( A = (/) -> ( ~P A ~<_ ~P B <-> ~P (/) ~<_ ~P B ) ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 5 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 6 | 4 5 | syl | |- ( A ~<_ B -> ( (/) ~< A <-> A =/= (/) ) ) |
| 7 | 6 | biimpar | |- ( ( A ~<_ B /\ A =/= (/) ) -> (/) ~< A ) |
| 8 | simpl | |- ( ( A ~<_ B /\ A =/= (/) ) -> A ~<_ B ) |
|
| 9 | fodomr | |- ( ( (/) ~< A /\ A ~<_ B ) -> E. f f : B -onto-> A ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( A ~<_ B /\ A =/= (/) ) -> E. f f : B -onto-> A ) |
| 11 | vex | |- f e. _V |
|
| 12 | fopwdom | |- ( ( f e. _V /\ f : B -onto-> A ) -> ~P A ~<_ ~P B ) |
|
| 13 | 11 12 | mpan | |- ( f : B -onto-> A -> ~P A ~<_ ~P B ) |
| 14 | 13 | exlimiv | |- ( E. f f : B -onto-> A -> ~P A ~<_ ~P B ) |
| 15 | 10 14 | syl | |- ( ( A ~<_ B /\ A =/= (/) ) -> ~P A ~<_ ~P B ) |
| 16 | 3 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 17 | 16 | pwexd | |- ( A ~<_ B -> ~P B e. _V ) |
| 18 | 0ss | |- (/) C_ B |
|
| 19 | 18 | sspwi | |- ~P (/) C_ ~P B |
| 20 | ssdomg | |- ( ~P B e. _V -> ( ~P (/) C_ ~P B -> ~P (/) ~<_ ~P B ) ) |
|
| 21 | 17 19 20 | mpisyl | |- ( A ~<_ B -> ~P (/) ~<_ ~P B ) |
| 22 | 2 15 21 | pm2.61ne | |- ( A ~<_ B -> ~P A ~<_ ~P B ) |