This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfzsplit.b | |- B = ( Base ` G ) |
|
| gsummptfzsplit.p | |- .+ = ( +g ` G ) |
||
| gsummptfzsplit.g | |- ( ph -> G e. CMnd ) |
||
| gsummptfzsplit.n | |- ( ph -> N e. NN0 ) |
||
| gsummptfzsplitl.y | |- ( ( ph /\ k e. ( 0 ... N ) ) -> Y e. B ) |
||
| Assertion | gsummptfzsplitl | |- ( ph -> ( G gsum ( k e. ( 0 ... N ) |-> Y ) ) = ( ( G gsum ( k e. ( 1 ... N ) |-> Y ) ) .+ ( G gsum ( k e. { 0 } |-> Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzsplit.b | |- B = ( Base ` G ) |
|
| 2 | gsummptfzsplit.p | |- .+ = ( +g ` G ) |
|
| 3 | gsummptfzsplit.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptfzsplit.n | |- ( ph -> N e. NN0 ) |
|
| 5 | gsummptfzsplitl.y | |- ( ( ph /\ k e. ( 0 ... N ) ) -> Y e. B ) |
|
| 6 | fzfid | |- ( ph -> ( 0 ... N ) e. Fin ) |
|
| 7 | incom | |- ( ( 1 ... N ) i^i { 0 } ) = ( { 0 } i^i ( 1 ... N ) ) |
|
| 8 | 7 | a1i | |- ( ph -> ( ( 1 ... N ) i^i { 0 } ) = ( { 0 } i^i ( 1 ... N ) ) ) |
| 9 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 10 | 9 | oveq1i | |- ( 1 ... N ) = ( ( 0 + 1 ) ... N ) |
| 11 | 10 | a1i | |- ( ph -> ( 1 ... N ) = ( ( 0 + 1 ) ... N ) ) |
| 12 | 11 | ineq2d | |- ( ph -> ( { 0 } i^i ( 1 ... N ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... N ) ) ) |
| 13 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 14 | 13 | biimpi | |- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 15 | fzpreddisj | |- ( N e. ( ZZ>= ` 0 ) -> ( { 0 } i^i ( ( 0 + 1 ) ... N ) ) = (/) ) |
|
| 16 | 4 14 15 | 3syl | |- ( ph -> ( { 0 } i^i ( ( 0 + 1 ) ... N ) ) = (/) ) |
| 17 | 8 12 16 | 3eqtrd | |- ( ph -> ( ( 1 ... N ) i^i { 0 } ) = (/) ) |
| 18 | fzpred | |- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( { 0 } u. ( ( 0 + 1 ) ... N ) ) ) |
|
| 19 | 4 14 18 | 3syl | |- ( ph -> ( 0 ... N ) = ( { 0 } u. ( ( 0 + 1 ) ... N ) ) ) |
| 20 | uncom | |- ( { 0 } u. ( ( 0 + 1 ) ... N ) ) = ( ( ( 0 + 1 ) ... N ) u. { 0 } ) |
|
| 21 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 22 | 21 | oveq1i | |- ( ( 0 + 1 ) ... N ) = ( 1 ... N ) |
| 23 | 22 | uneq1i | |- ( ( ( 0 + 1 ) ... N ) u. { 0 } ) = ( ( 1 ... N ) u. { 0 } ) |
| 24 | 20 23 | eqtri | |- ( { 0 } u. ( ( 0 + 1 ) ... N ) ) = ( ( 1 ... N ) u. { 0 } ) |
| 25 | 19 24 | eqtrdi | |- ( ph -> ( 0 ... N ) = ( ( 1 ... N ) u. { 0 } ) ) |
| 26 | 1 2 3 6 5 17 25 | gsummptfidmsplit | |- ( ph -> ( G gsum ( k e. ( 0 ... N ) |-> Y ) ) = ( ( G gsum ( k e. ( 1 ... N ) |-> Y ) ) .+ ( G gsum ( k e. { 0 } |-> Y ) ) ) ) |